

EAST WATERWAY PHASE 1 REMOVAL ACTION: RECONTAMINATION MONITORING 2006 DATA REPORT

For submittal to:

The US Environmental Protection Agency Region 10 Seattle, WA

February 23, 2007

Prepared by: Wind Ward

Table of Contents

List of Figures		ii
Acronyms		ii
1.0 Introduc	tion	1
 2.1 SAMP 2.2 SAMP TABLE 2.3 SAMP 	ediment Core and Grab Sampling Methods LE IDENTIFICATION SCHEME LING LOCATIONS E. 1. EWW SEDIMENT CORE AND GRAB SAMPLING LOCATIONS LING METHODS DEVIATIONS FROM THE RMP	2 2 2 3 4 4
	ory Methods	5
TABLE	LYTICAL METHODS 2. CHEMICAL ANALYSIS METHODS FOR SURFACE SEDIMENT SAMPLES RATORY DEVIATIONS FROM THE RMP	5 5 6
4.0 Results		6
TABLE 4.2 SURFA TABLE 4.2.1 4.2.2 4.2.3 4.2.4 4.3 DATA 4.4 CHEM	ACE SEDIMENT CHEMISTRY RESULTS 4. SAMPLE RESULTS EXCEEDING SMS CRITERIA Conventionals: grain size, TOC, and percent solids PCBs as Aroclors and pesticides SVOCs Metals INTERPRETATION GICAL DATA VALIDATION RESULTS	66 66 77 88 88 99 99 99
5.0 Referend 	ces	11
Figures Appendices		12
APPENDIX B APPENDIX C APPENDIX D APPENDIX E		

List of Figures

- Figure 1. Sample locations
- Figure 2. Depth of material in core samples
- Figure 3. Exceedances of SQS/CSL for total PCBs in East Waterway
- Figure 4. Exceedances of SQS/CSL for BEHP in East Waterway
- Figure 5. Exceedances of SQS/CSL for mercury in East Waterway

Acronyms

AET	apparent effects threshold
ARI	Analytical Resources, Inc.
BEHP	bis(2-ethylhexyl)phthalate

GC/ECD gas chromatograph-electron capture detection

GC/MS gas chromatograph-mass spectrometry continuing calibration verifications

CSL cleanup screening level

CVAA cold vapor atomic absorption

DMMP Dredged Material Management ProgramEPA US Environmental Protection Agency

East Waterway Operable Unit of the Harbor Island Superfund site ICP-AES inductively coupled plasma-atomic emission spectrometry

ID identification

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PSEP Puget Sound Estuary Program
RMP recontamination monitoring plan

SDG sample delivery group

SMS Washington State Sediment Management Standards

sqs sediment quality standards of SMSsvoc semivolatile organic compound

TOC total organic carbon

Windward Environmental LLC

1.0 Introduction

This data report presents the results of the chemical analyses conducted with surface sediment samples collected as part of the recontamination monitoring plan (RMP) (Windward 2005) for the East Waterway Phase 1 Removal Action Plan. The RMP presented the sampling design and analysis plan, including details on project organization, field data collection, laboratory analyses, and data management. As described in the RMP, the data will be used to evaluate compliance with the cleanup standards identified in the Phase 1 Removal Action engineering evaluation and cost analysis, characterize surface sediment chemistry throughout the removal area, assess the thickness of the sand layer, and assess any changes in surface chemistry or sand layer thickness over time. This information will be used in the remedial investigation/feasibility study planned for East Waterway (EWW).

Sediment cores were collected at 21 locations to confirm the thickness of the sand layer. Surface sediment grab samples were collected for chemical analyses at 20 locations in the EWW Phase 1 Removal Action footprint in January 2006. All surface sediment samples were analyzed for polychlorinated biphenyls (PCBs), organochlorine pesticides, mercury and metals, and semivolatile organic compounds (SVOCs) listed in the Washington State Sediment Management Standards (SMS).

The remainder of this report is organized into the following sections:

- Section 2.0 –Sediment Core and Grab Sampling Methods
- Section 3.0 Laboratory methods
- ◆ Section 4.0 Results
- ◆ Section 5.0 References

The text of this report is supported by the following appendices:

- ◆ Appendix A Data tables
- ◆ Appendix B Data management
- ◆ Appendix C Data validation reports
- Appendix D Raw analytical laboratory data
- ◆ Appendix E Collection forms and field notes
- ◆ Appendix F Chain-of-custody forms

2.0 EWW Sediment Core and Grab Sampling Methods

This section presents the surface sediment sample identification (ID) scheme, sample locations, collection methods, and field deviations from the RMP (Windward 2005) for samples collected in the EWW in January 2006. Additional details regarding the surface sediment collection methods are presented in the RMP. Copies of field notes, surface sediment collection forms, and protocol modification forms are presented in Appendix E. Copies of completed chain-of-custody forms used to track sample custody are presented in Appendix F. Photographs of the sediment cores are provided on a compact disk (located in a pocket inside the back cover).

2.1 SAMPLE IDENTIFICATION SCHEME

Each sampling location was assigned a unique alphanumeric location ID number. The first four characters were "EW-RM" to identify the EWW recontamination monitoring event. The last characters were consecutive numbers between 1 and 30 to identify the specific location within the EWW (e.g., EW-RM-1). Sample IDs were consistent with the location IDs but also included the two-digit year after the event identifier. For example, a sample taken at location 1 this year was identified as "EW-RM06-1."

Field quality assurance/quality control samples were assigned modified sample identifiers as described below:

- Field duplicates were assigned a unique sample location number beginning with 101 (e.g., EW-RM06-101).
- Rinsate blanks were assigned the same characters as the sample identifier, followed by the identifier "RB." For example, the rinsate blank collected for sample EW-RM06-1 would be "EW-RM06-1-RB."

2.2 SAMPLING LOCATIONS

The rationale for selecting sediment core and surface grab locations is presented in the RMP (Windward 2005). Sampling was conducted January 12, 23, and 24, 2006. Twenty eight locations were sampled (Table 1). Twelve locations were designated in the RMP for depth core sampling only. However, if there were less than 10 cm of sand layer observed at a core location or if there were at least 2 cm of material overlying the sand layer, then a sediment chemistry grab sample was collected at the location. Sampling locations are shown in Figure 1.

Table 1. EWW sediment core and grab sampling locations

		SAMPLE	SAMPLE		UAL	Tar Coord	GET INATES ^b	DISTANCE	
LOCATION ID	ZONE	DATE	TIME	(X)	(Y)	(X)	(Y)	OFF TARGET (ft)	SAMPLE TYPE
EW-RM01	1	01.12.06	0913	1267410	214187	1267413	214188	2.7	chemistry grab
EW-RM02	2	01.12.06	0930	1267727	214220	1267726	214222	2.5	chemistry grab
FIM DMOO	_	01.24.06	0912	1267653	214296	4007057	04.4000	5.3	core
EW-RM03	2	01.24.06	1321	1267652	214294	1267657	214293	5.3	chemistry grab
EW-RM04	1	01.24.06	1338	1267260	214433	1267258	214434	2.1	chemistry grab
EVAL DA405		01.23.06	0847	1267518	214454	1007510	04.4450	4.3	core
EW-RM05	2	01.24.06	1351	1267518	214460	1267519	214458	2.3	chemistry grab
FIM DMOC	_	01.24.06	0939	1267728	214454	4007700	04.4450	2.9	core
EW-RM06	2	01.24.06	1404	1267729	214452	1267730	214452	1.1	chemistry grab
EW-RM07	1	01.24.06	1415	1267460	214581	1267462	214581	2.2	chemistry grab
EW DMOO	_	01.24.06	1005	1267367	214644	4007000	04.40.45	1.2	core
EW-RM08	2	01.24.06	1426	1267368	214644	1267368	214645	1.4	chemistry grab
EW-RM09	2	01.23.06	0924	1267645	214659	1267647	214659	1.7	core
EVA DAMA		01.24.06	1048	1267529	214703	1007507	04.4700	2.3	core
EW-RM10	2	01.24.06	1437	1267530	214703	1267527	214703	2.7	chemistry grab
EW-RM11	2	01.23.06	0958	1267443	214764	1267439	214767	4.7	core
EW-RM12	2	01.23.06	1305	1267262	214780	1267254	214787	11.1	core
EW-RM13	2	01.23.06	1340	1267519	214788	1267518	214788	1.4	core
EW-RM14	2	01.23.06	1407	1267526	214848	1267527	214849	1.2	core
EW DM45	_	01.12.06	0835	1267660	214866	4007050	24.4000	7.6	core
EW-RM15	3	01.12.06	1133	1267647	214877	1267653	214869	9.6	chemistry grab
EW-RM16 ^c	2	01.12.06	0947	1267619	215022	1267620	215021	1.3	chemistry grab
EW-RM17	2	01.23.06	1439	1267481	215017	1267477	215018	4.0	core
EW DM40	2	01.24.06	1111	1267317	215027	1067017	245020	2.8	core
EW-RM18		01.12.06	1533	1267314	215030	1267317	215030	3.2	chemistry grab
EW DM40	3	01.23.06	1112	1267653	215081	1067654	245004	1.4	core
EW-RM19		01.24.06	1506	1267629	215096	1267654	215081	28.9	chemistry grab
EW DMOO	_	01.24.06	1134	1267310	215159	4007000	245464	2.4	core
EW-RM20	2	01.12.06	1524	1267311	215162	1267308	215161	3.3	chemistry grab
EW DM04	_	01.23.06	1508	1267599	215152	1267600	245452	1.8	core
EW-RM21	2	01.24.06	1518	1267598	215152	1267600	215153	2.0	chemistry grab
EW-RM22	3	01.23.06	1138	1267770	215170	1267770	215171	1.4	core
EW DM00	2	01.24.06	0849	1267406	215274	1267400	215274	4.0	core
EW-RM23	2	01.12.06	1511	1267408	215270	1267408	215271	0.7	chemistry grab
EW-RM24	1	01.12.06	1000	1267607	215311	1267609	215311	2.3	chemistry grab

		S	C	Act Coord	UAL INATES ^b		GET INATES ^b	DISTANCE				
LOCATION ID	ZONE	SAMPLE DATE	SAMPLE TIME	(X)	(Y)	(X)	(Y)	OFF TARGET (ft)	SAMPLE TYPE			
EW-RM25	1	01.12.06	1018	1267648	215503	1267653	215501	5.7	chemistry grab			
EW-RM26	2	01.23.06	1558	1267433	215676	1267426	1267426	1267426	1267436	215674	3.4	core
EVV-RIVIZO		01.12.06	1456	1267430	215676	1207430	213074	6.4	chemistry grab			
EW-RM27	2	01.23.06	1534	1267654	215743	1267654	215744	0.7	core			
EW-RM28	2	01.24.06	0817	1267560	216033	1267557	216035	4.0	core			
EVV-KIVIZO		01.12.06	1442	1267556	216035	120/55/	210035	1.3	chemistry grab			

Zone 1 is area with no interim action, Zone 2 is area with sand layer placement, Zone 3 is mound area where gravel layer was placed

2.3 SAMPLING METHODS

Sediment cores were initially collected using a gravity corer with a 3-inch (outer diameter) steel core tube and a butyl acetate core tube liner. A vibratory core sampler (vibracorer) was used after initial attempts with the gravity corer failed to achieve the necessary penetration. The vibracorer was able to achieve the minimum target penetration depth of 80 cm. At each sample location, total water depth and total sediment recovered were measured and recorded in the field log book. Time and date of core collection were also recorded. Cores were photographed through the clear liner, and specific details including the presence or absence of the sand layer, the depth of the sand layer, and visible organic material of each core were documented.

Surface sediment grab samples were collected with a stainless steel, 0.1-m² van Veen grab sampler. Before processing, each successful grab sample was evaluated for acceptability in accordance with the criteria listed in the RMP. Sediment samples for chemical analysis were collected from the 0-to-10-cm-depth interval with a clean stainless steel spoon and placed into a clean stainless steel bowl for homogenization.

2.4 FIELD DEVIATIONS FROM THE RMP

Field deviations from the RMP (Windward 2005) included modifications to the core sampling method and core acceptance criteria. These field deviations did not affect the data quality and are discussed below. The US Environmental Protection Agency (EPA) was consulted on these changes.

◆ A sediment core collected from location EW-RM15 was accepted, although it did not meet the minimum penetration depth criteria (80 cm). After multiple attempts, 60 cm of penetration was achieved and a 2- to 2.5-cm layer of material was observed above the sand layer resulting in the collection of a sediment grab sample.

b Washington State Plane North, NAD83, US survey ft.

^c Field duplicate EW-RM06-101 was collected at this location.

◆ Sediment cores were not collected using a 3-inch (outer diameter) gravity corer because initial attempts with added weights on January 12, 2006, could not penetrate enough of the sand and gravel cap layer to meet core penetration acceptance criteria. The coring equipment was switched to a 4-inch (outer diameter) Vibracorer following consultation with EPA.

3.0 Laboratory Methods

The methods used to chemically analyze sediment samples are described briefly in this section and in detail in the EWW RMP (Windward 2005). This section also summarizes any laboratory deviations from the RMP. All chemical analyses of the sediment samples were conducted at Analytical Resources, Inc. (ARI).

3.1 ANALYTICAL METHODS

The chemical testing adhered to the most recent EPA analysis protocols which represent standard methods used for the analysis of these analytes in sediments. Table 2 summarizes the specific methods used to analyze the sediment samples.

Table 2. Chemical analysis methods for surface sediment samples

PARAMETER	METHOD	REFERENCE
PCBs as Aroclors	GC/ECD	EPA 8082
Organochlorine pesticides ^a	GC/ECD	EPA 8081A
SVOCs (including PAHs) ^b	GC/MS	EPA 8270C
Mercury	CVAA	EPA 7471A
Other metals ^c	ICP-AES	EPA 6010B
Grain size	sieve/pipette	PSEP (1986)
TOC	combustion	Plumb (1981)
Total solids	oven-dried	EPA 160.3

Target pesticides included: 4,4'-DDT, 4,4'-DDE, 4,4'-DDD, 2,4'-DDT, 2,4'-DDE, 2,4'-DDD, aldrin, alpha-BHC, beta-BHC, delta-BHC, gamma-BHC, oxychlordane, alpha- and gamma-chlordane, cis- and trans-nonachlor, dieldrin, alpha- and beta-endosulfan, endosulfan sulfate, endrin, endrin ketone, endrin aldehyde, heptachlor, heptachlor epoxide, hexachlorobenzene, methoxychlor, mirex, and toxaphene.

CVAA - cold vapor atomic absorption

GC/ECD - gas chromatograph-electron capture detection

GC/MS - gas chromatograph-mass spectrometry

EPA – US Environmental Protection Agency

ICP-AES - inductively coupled plasma-atomic emission spectrometry

Target PAHs included: anthracene, pyrene, dibenzofuran, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene, benzo(b)fluoranthene, fluoranthene, benzo(k)fluoranthene, acenaphthylene, chrysene, benzo(a)pyrene, dibenz(a,h)anthracene, benz(a)anthracene, acenaphthene, phenanthrene, fluorene, 2-chloronaphthalene, naphthalene, and 2-methylnaphthalene.

^c Target metals included: arsenic, antimony, cadmium, chromium, copper, lead, nickel, silver, and zinc.

PAH – polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PSEP - Puget Sound Estuary Program

SVOC -semivolatile organic compound

TOC - total organic carbon

3.2 LABORATORY DEVIATIONS FROM THE RMP

There were no laboratory deviations from the methods and procedures described in the RMP, with the following exception. The RMP lists EPA Method 9060 as the test method for total organic carbon (TOC). Plumb (1981) is the correct method reference for TOC analysis in these sediment samples.

4.0 Results

4.1 COVER LAYER VERIFICATION RESULTS

Twenty-one core samples were collected in the areas where sand or gravel cover material had been placed (Zones 2 and 3)to confirm the depth of the cover layer. These results are provided in Table 3. In all core samples, at least 10 cm of sand layer were observed. At four locations (EW-RM05, EW-RM15, EW-RM19, and EW-RM21) more than 2 cm of material had accumulated on top of the sand cover layer, which resulted in the collection of additional chemistry samples (Figure 2).

Table 3. Depth of cover layer and accumulation in core samples

Location ID	ZONE	SAND LAYER DEPTH (cm)	OVERLYING MATERIAL DEPTH (cm)	SURFACE SEDIMENT GRAB COLLECTED	REASON FOR CHEMISTRY GRAB
EW-RM03	2	23	1	Υ	predetermined in RMP
EW-RM05	2	25	5	Y	overlying material ≥ 2 cm
EW-RM06	2	39	1	Υ	predetermined in RMP
EW-RM08	2	25	<1	Υ	predetermined in RMP
EW-RM09	2	30	1	N	overlying material < 2 cm
EW-RM10	2	24	1	Υ	predetermined in RMP
EW-RM11	2	23	1.5	N	overlying material < 2 cm
EW-RM12	2	30	1	N	overlying material < 2 cm
EW-RM13	2	24	1	N	overlying material < 2 cm
EW-RM14	2	28	1.5	N	overlying material < 2 cm
EW-RM15	3	23	2.5	Y	overlying material ≥ 2 cm
EW-RM17	2	20	not visible	N	overlying material < 2 cm
EW-RM18	2	38	<1	Υ	predetermined in RMP
EW-RM19	3	29	2	Y	overlying material ≥ 2 cm
EW-RM20	2	34	not visible	Y	predetermined in RMP

EW-RM21	2	36	3	Y	overlying material ≥ 2 cm
EW-RM22	3	43	1.5	N	overlying material < 2 cm
EW-RM23	2	23	<1	Y	predetermined in RMP
EW-RM26	2	41	4	Y	predetermined in RMP
EW-RM27	2	17	1	N	overlying material < 2 cm
EW-RM28	2	24	<1	Y	predetermined in RMP

RMP – recontamination monitoring plan

Bold and shading indicates locations where chemistry grab samples were subsequently collected because > 2cm of accumulated material was observed on top of the cover material.

4.2 SURFACE SEDIMENT CHEMISTRY RESULTS

Surface sediment grab samples were analyzed for the full suite of SMS chemicals. The data validation, conducted by EcoChem, Inc., is discussed in Section 4.3 and presented in full in Appendix C. Complete data tables and raw laboratory data are presented in Appendices A and D, respectively. Data management protocols, including rules for the treatment of lab replicates and field duplicates as well as summation rules for total PCBs, total polycyclic aromatic hydrocarbons (PAHs) and total DDTs, are presented in Appendix B.

Appendix A presents a summary of chemistry results for the 21 EWW surface sediment samples, including the number of detections, range of detected concentrations, mean of detected concentrations, and range of reporting limits for chemicals reported and non-detects. In addition, the complete data tables containing results for each sample compared to SMS, Dredged Material Management Program (DMMP), or apparent effects threshold (AET) values are presented. DMMP screening level guideline (SL) and DMMP maximum level guideline (ML) were used for 14 chemicals for which there are no available SMS.

All surface sediment samples collected from the EWW were analyzed by ARI for PCBs as Aroclors, pesticides, metals, SVOCs (including PAHs and phthalates), grain size, TOC, and percent solids. The results of the analyses are discussed below by analyte group. Table 4 presents the chemistry results that exceeded SMS. Surface sediment chemistry results represented by sediment quality standards (SQS) or cleanup screening level (CSL) categories for total PCBs, bis(2-ethylhexyl)phthalate (BEHP), and mercury are presented in Figures 3 through 5, respectively.

Table 4. Sample results exceeding SMS criteria

		TOTAL PCBs (mg/kg OC)		ETHYLH PHTH/	BIS(2- ETHYLHEXYL)- PHTHALATE (mg/kg OC)		4- LORO- ZENE g OC)			MERCURY (mg/kg Dw)		
LOCATION		SQS	SQS CSL		CSL	sqs	CSL	SQS	CSL	SQS	CSL	
ID	SAMPLE ID	12	65	47	78	3.1	9.0	420	1,200	0.41	0.59	
EW-RM01	EW-RM06-1	3	2	1	6	1.3	3 J	6	30	0.	17	
EW-RM02	EW-RM06-2	4	.5	8.	.8	7	.9	33	30	0.	06	
EW-RM03	EW-RM06-3	2.8	3 U	4.	.6	5	.7	4	4	0.0	5 U	
EW-RM04	EW-RM06-4	<u>17</u>	<u>70</u>	1	16		0.91 J		450		0.15	
EW-RM05	EW-RM06-5	1	6	15		1.7		220		0.13		
EW-RM06	EW-RM06-6	12	<u>2</u> J	20		6.2		400		0.13		
EW-RM07	EW-RM06-7	1	6	18		1.7		520		0.12		
EW-RM10	EW-RM06-10	2	3	30		3.2		470		0.67		
EW-RM15	EW-RM06-15	10	00	12	120		7.4		340		0.78	
EW-RM16	EW-RM06-16	1	6	1	6	1.0 J		560		0.	16	
EVV-KIVI IO	EW-RM06-101	1	9	1	2	1	.4	390		0.	15	
EW-RM18	EW-RM06-18	3.5	5 U	3.5	5 U	3.5	i U	20) U	0.0	4 U	
EW-RM19	EW-RM06-19	3	0	1	4	0.8	1 J	48	80	0.	38	
EW-RM24	EW-RM06-24	14	14 J		26		1.0 J		310		0.28	
EW-RM25	EW-RM06-25	3	4	20		1.7		590		0.33		
EW-RM26	EW-RM06-26	4	0	1	3	4.0	4.0 U		20 U		0.05 U	

dw - dry weight

Concentration in **bold** indicates SQS exceedance.

Concentration in **bold underline** indicates CSL exceedance.

CSL - cleanup screening level

OC - organic carbon

SQS – sediment quality standards

4.2.1 Conventionals: grain size, TOC, and percent solids

TOC values ranged from 0.35 to 2.3% dry weight. Only one sample, EW-RM06-20, was less than 0.5%. The percent solids ranged from 57.6 to 93.6. Grain size results were consistent with the placement of cover material. In Zone 1, where no cover material was placed, the sediments consisted primarily of fine to medium sand. The percent of fine material (silt + clay) was typically higher in Zone 1 sediments than in Zone 2 or 3 sediments. In Zone 2, where sand cover material was placed, sediments were typically very coarse to medium sand. Finally, in Zone 3, where gravel cover material was placed, the sediments were predominantly gravel.

4.2.2 PCBs as Aroclors and pesticides

Total PCBs exceeded the SQS at 12 locations (Figure 3). At two of those locations, EW-RM04 and EW-RM15, total PCB concentrations also exceeded the CSL. Pesticides were not detected in any of the samples.

4.2.3 SVOCs

No PAH results were above SMS criteria. BEHP was the only phthalate to exceed SMS criteria. At location EW-RM-15, BEHP exceeded both the SQS and CSL with a concentration of 120 mg/kg OC (Figure 4). Phenol exceeded the SQS at seven locations, and 1,4--dichlorobenzene had detected exceedances of the SQS at five locations. No other SVOCs exceeded SMS criteria.

4.2.4 Metals

Mercury was the only metal to exceed SMS criteria. Mercury exceeded both the SQS and CSL at locations EW-RM10 and EW-RM15, with concentrations of 0.67 and 0.78 mg/kg, respectively (Figure 4).

4.3 DATA INTERPRETATION

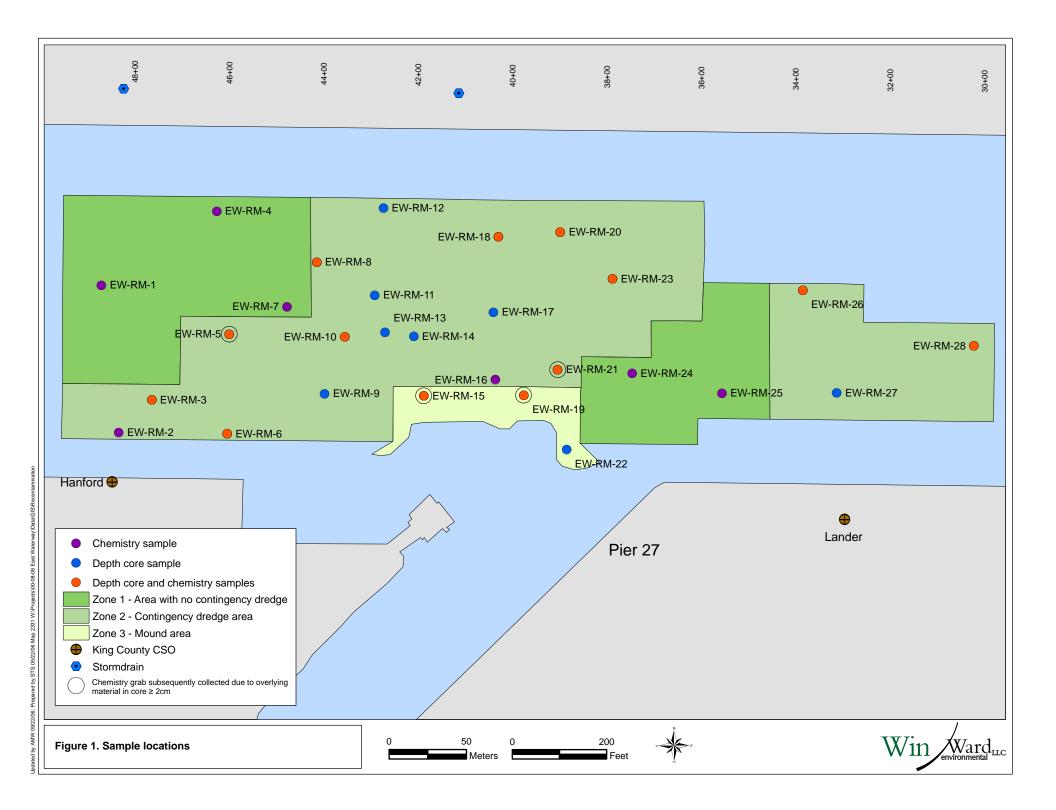
The results of the cover layer verification sampling indicate that the depth of the cover layer was greater than 10cm at all sampling locations where cover layer thickness was measured. All measured depths exceeded 20cm with the exception of one location where a depth of 17cm was reported (EW-RM-27).

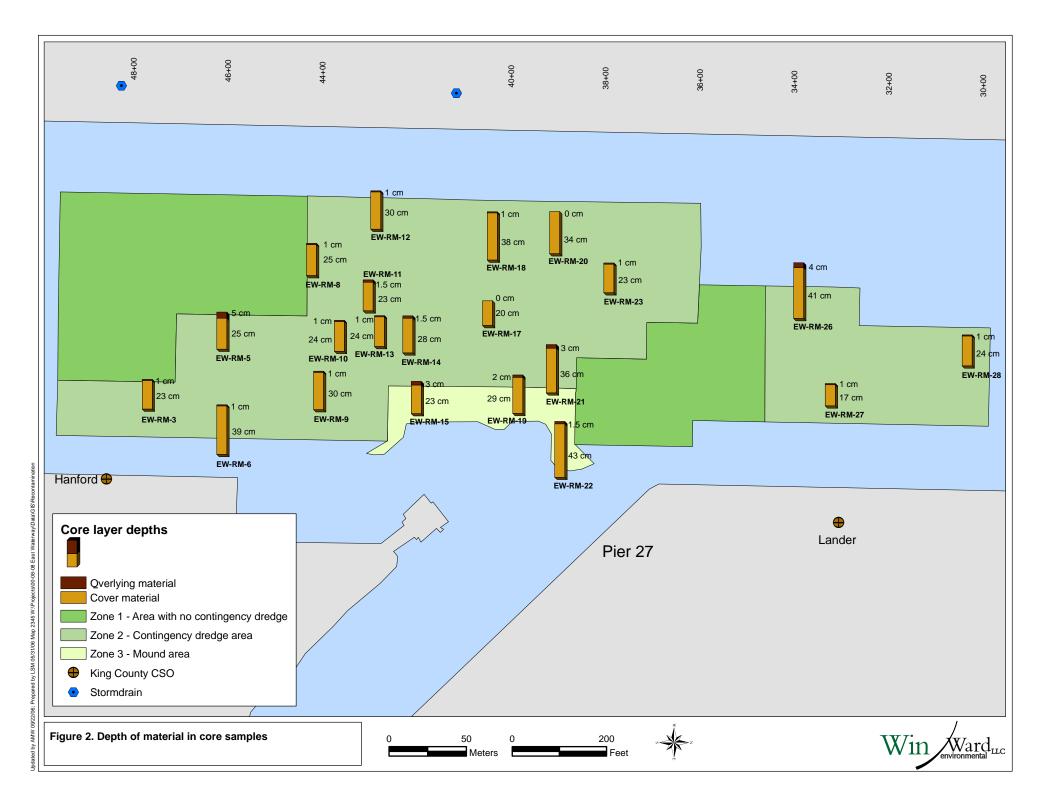
The surface sediment chemistry results were consistent with the deposition of contaminated material on top of the sand cover material resulting in surface sediment chemistry results above SMS values. All locations with sediment chemistry values above the SMS were locations with greater than 2cm of material deposited on top of the cover material with one exception (EW-RM-10). The goal of the recontamination monitoring study was to assess the surface sediment in the removal area. The extent to which contaminated subsurface sediment might be mixed with the cover layer material was not assessed.

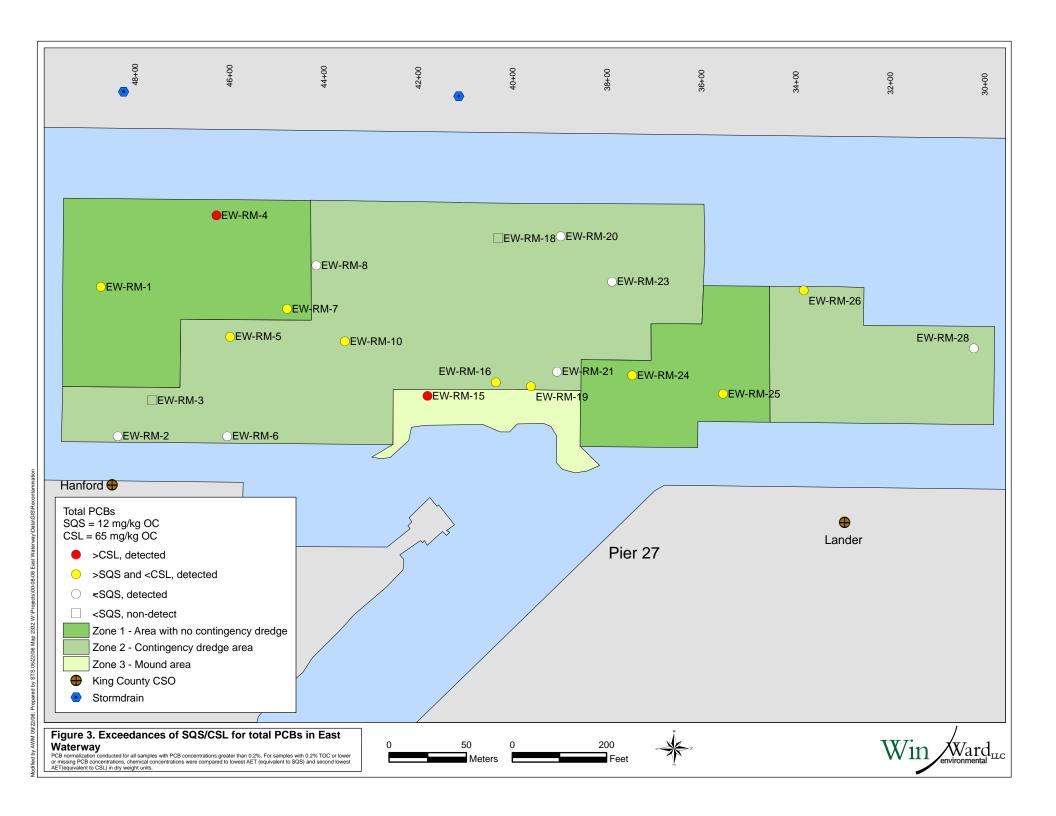
Future recontamination monitoring events should focus on identifying areas of deposition and further characterizing the areas which have been observed to be depositional with SMS exceedances. The initial placement of the cover material appears to have been successful and future sampling of the depth of the cover material should focus on areas that were not sampled in the initial sampling event.

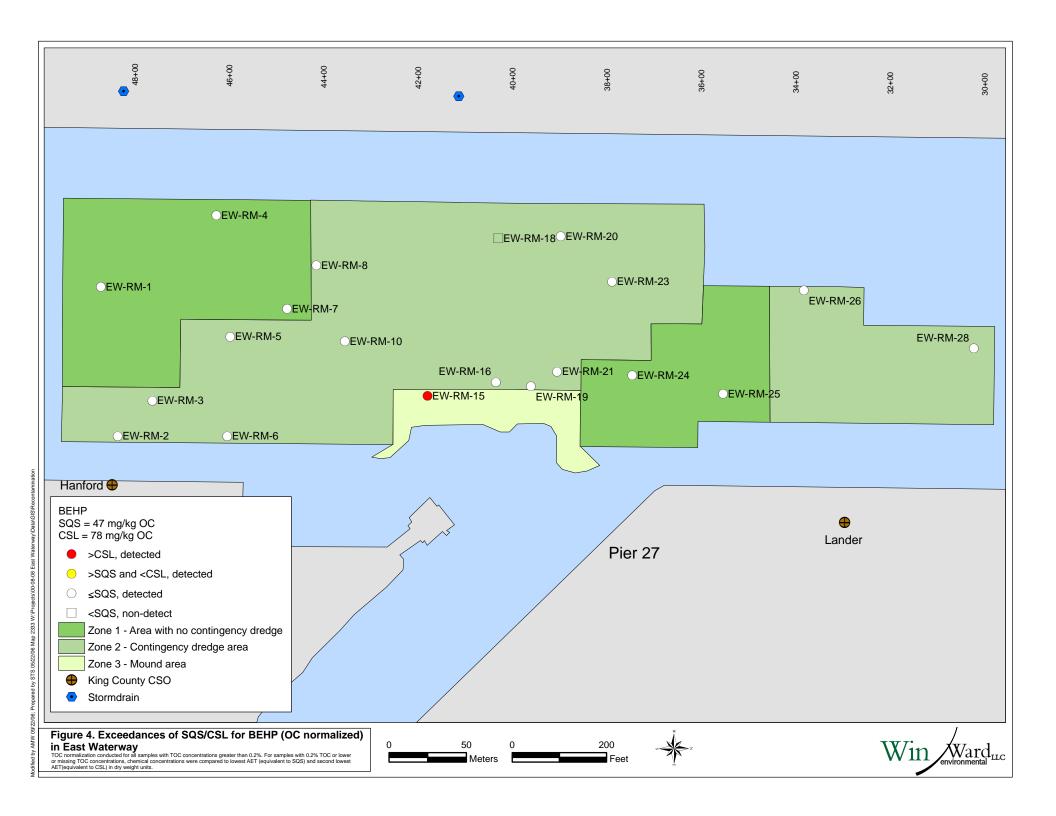
4.4 CHEMICAL DATA VALIDATION RESULTS

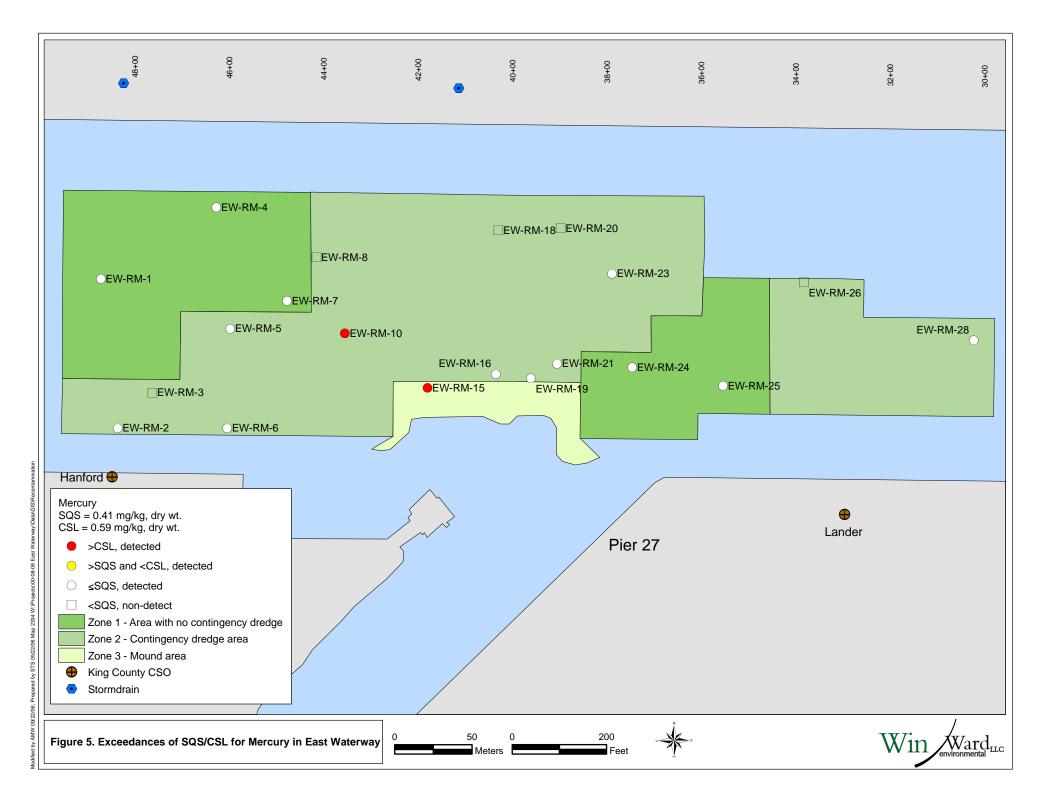
Independent data validation of all chemical analysis results was conducted by EcoChem. The complete data validation report is provided in Appendix C. The results of the validation are summarized below. Detailed information regarding every qualified sample is available in Appendix C.


The surface sediment samples submitted to ARI were analyzed in one sample delivery group (SDG). EcoChem conducted a full-level data validation on this SDG (IZ26). The data validation included a review of calibration, internal standard, and interference check sample summary forms. The majority of the data did not require qualification, or were qualified with a J, indicating an estimated value. Based on the information reviewed, the overall data quality was considered acceptable for use as qualified. Issues that resulted in the qualification of data are summarized below.


- ◆ The percent recovery for antimony in the matrix spike sample was 19.4%. The post-digestion spike recovery was within quality control limits. Antimony was never detected, and all antimony results were UJ-qualified as estimated.
- ◆ 2,4-Dinitrophenol, 3-nitroaniline, 4-nitroaniline, benzyl alcohol, and 4,6-dinitroo-cresol exhibited low responses in continuing calibration verifications (CCVs) These chemicals were not detected in any samples, and all results were UJ-qualified.
- ◆ When more than one Aroclor is present in a sample, the potential exists for a high bias from the contribution of one Aroclor to another caused by common peaks or peaks that cannot be completely resolved. Analytical peaks are selected and Aroclor identification is made based on the best resolution possible for that particular sample. Reporting limits for some PCB Aroclors were elevated in six samples because of chromatographic interferences and overlapping Aroclor patterns. Reported Aroclor concentrations were reported based on the individual Aroclors that provided the best match to the observed sample pattern.
- ◆ Thirteen samples exhibited an analytical response above standard reporting limits for select pesticides. These tentatively identified results were Y-qualified by the laboratory as non-detect at elevated reporting limits. The Y-qualifier indicates that chromatographic interference from PCB congeners in the sample prevented adequate resolution of the analyte at the standard reporting limits.


5.0 References


- Plumb R, Jr. 1981. Procedures for handling and chemical analysis of sediment and water samples. Waterways Experiment Station, US Army Corps of Engineers, Vicksburg, MS.
- PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the Puget Sound Estuary Program. US Environmental Protection Agency, Region 10, Seattle, WA.
- Windward. 2005. East Waterway Phase 1 removal action: recontamination monitoring plan. Windward Environmental LLC, Seattle, WA.


Figures

APPENDIX A DATA TABLES

Table A-1.	Summary of chemistry results for EWW recontamination monitoring 2006 surface sediment samples	1
Table A-2a.	Concentrations of analytes in recontamination monitoring sediment samples: EW-RM06-1 through EW-RM06-15	5
Table A-2b.	Concentrations of analytes in recontamination monitoring sediment samples: EW-RM06-16 through EW-RM06-28	10
Table A-3a.	Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-1 through EW-RM06-7	15
Table A-3b.	Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-8 through EW-RM06-19	18
Table A-3c.	Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-21 through EW-RM06-28	21
Table A-4.	AET substitution	24

Table A-1.Summary of chemistry results for EWW recontamination monitoring 2006 surface sediment samples

		DETECTION	D ETECT	ED CONCENTI	RATION	REPORTING LIMIT ^a	
ANALYTE	Unit	FREQUENCY	Мінімим	Махімим	M EAN ^b	Мінімим	MAXIMUN
PCBs							
Aroclor-1016	μg/kg dw	0 / 21	nd	nd	nd	19	510
Aroclor-1221	μg/kg dw	0 / 21	nd	nd	nd	19	340
Aroclor-1232	μg/kg dw	0 / 21	nd	nd	nd	19	780
Aroclor-1242	μg/kg dw	0 / 21	nd	nd	nd	19	540
Aroclor-1248	μg/kg dw	0 / 21	nd	nd	nd	19	680
Aroclor-1254	μg/kg dw	15 / 21	10 J	1,200	160	19	1,500
Aroclor-1260	μg/kg dw	19 / 21	10 J	2,600	330	19	20
Total PCBs (calc'd)	μg/kg dw	19 / 21	20 J	2,600	450	nc	nc
Metals							
Antimony	mg/kg dw	0 / 21	nd	nd	nd	5	8
Arsenic	mg/kg dw	11 / 21	6	11	8	5	7
Cadmium	mg/kg dw	12 / 21	0.3	2.4	0.6	0.2	0.3
Chromium	mg/kg dw	21 / 21	15.7	43.9	22.4	na	na
Copper	mg/kg dw	21 / 21	14.9	78.4	32.5	na	na
Lead	mg/kg dw	21 / 21	3	131	24	na	na
Mercury	mg/kg dw	16 / 21	0.06	0.78	0.25	0.04	0.05
Nickel	mg/kg dw	21 / 21	14	26	20	na	na
Silver	mg/kg dw	2 / 21	0.5	2.2	1	0.3	0.4
Zinc	mg/kg dw	21 / 21	29.9	249	66	na	na
PAHs							
2-Chloronaphthalene	μg/kg dw	0 / 21	nd	nd	nd	19	39
2-Methylnaphthalene	μg/kg dw	8 / 21	18 J	300	57	19	20
Acenaphthene	μg/kg dw	13 / 21	11 J	96	26	20	20
Acenaphthylene	μg/kg dw	13 / 21	14 J	44	21	20	20
Anthracene	μg/kg dw	16 / 21	25	230	81	20	20
Benzo(a)anthracene	μg/kg dw	19 / 21	13 J	360	110	20	20
Benzo(a)pyrene	μg/kg dw	19 / 21	15 J	330	120	20	20
Benzo(b)fluoranthene	μg/kg dw	20 / 21	12 J	420	170	20	20
Benzo(g,h,i)perylene	μg/kg dw	16 / 21	16 J	110	43	20	20
Benzo(k)fluoranthene	μg/kg dw	20 / 21	10 J	410	130	20	20
Total benzofluoranthenes (calc'd)	μg/kg dw	20 / 21	22 J	830	300	nc	nc
Chrysene	μg/kg dw	20 / 21	11 J	520	160	20	20
Dibenzo(a,h)anthracene	μg/kg dw	13 / 21	11 J	30 J	16	20	20
Dibenzofuran	μg/kg dw	8 / 21	17 J	81	29	19	20
Fluoranthene	μg/kg dw	20 / 21	27	920	260	20	20

		DETECTION	D ETECT	ED CONCENT	RATION	REPORTING LIMIT ^a		
ANALYTE	Unit	FREQUENCY	Мінімим	Махімим	M EAN ^b	Мінімим	Махімим	
Fluorene	μg/kg dw	14 / 21	16 J	180	38	20	20	
Indeno(1,2,3-cd)pyrene	μg/kg dw	16 / 21	17 J	86	41	20	20	
Naphthalene	μg/kg dw	14 / 21	15 J	120	34	20	20	
Phenanthrene	μg/kg dw	20 / 21	12 J	380	100	20	20	
Pyrene	μg/kg dw	20 / 21	24	1,200	260	20	20	
Total HPAH (calc'd)	μg/kg dw	20 / 21	84 J	4,400 J	1,300	nc	nc	
Total LPAH (calc'd)	μg/kg dw	20 / 21	12 J	1,050	250	nc	nc	
Total PAH (calc'd)	μg/kg dw	20 / 21	103 J	5,400 J	1,500	nc	nc	
Phthalates								
Bis(2-ethylhexyl)phthalate	μg/kg dw	20 / 21	23	2,800	310	20	20	
Butyl benzyl phthalate	μg/kg dw	4 / 21	14 J	25	20	19	39	
Diethyl phthalate	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Dimethyl phthalate	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Di-n-butyl phthalate	μg/kg dw	4 / 21	13 J	120	46	19	20	
Di-n-octyl phthalate	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Other SVOCs								
1,2,4-Trichlorobenzene	μg/kg dw	0 / 21	nd	nd	nd	19	39	
1,2-Dichlorobenzene	μg/kg dw	0 / 21	nd	nd	nd	19	39	
1,3-Dichlorobenzene	μg/kg dw	2 / 21	20 J	28	24	19	20	
1,4-Dichlorobenzene	μg/kg dw	15 / 21	13 J	170	38	20	20	
2,4,5-Trichlorophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2,4,6-Trichlorophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2,4-Dichlorophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2,4-Dimethylphenol	μg/kg dw	0 / 21	nd	nd	nd	19	39	
2,4-Dinitrophenol	μg/kg dw	0 / 21	nd	nd	nd	190	390	
2,4-Dinitrotoluene	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2,6-Dinitrotoluene	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2-Chlorophenol	μg/kg dw	0 / 21	nd	nd	nd	19	39	
2-Methylphenol	μg/kg dw	0 / 21	nd	nd	nd	19	39	
2-Nitroaniline	μg/kg dw	0 / 21	nd	nd	nd	97	200	
2-Nitrophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
3,3'-Dichlorobenzidine	μg/kg dw	0 / 21	nd	nd	nd	97	200	
3-Nitroaniline	μg/kg dw	0 / 21	nd	nd	nd	97	200	
4,6-Dinitro-o-cresol	μg/kg dw	0 / 21	nd	nd	nd	190	390	
4-Bromophenyl phenyl ether	μg/kg dw	0 / 21	nd	nd	nd	19	39	
4-Chloro-3-methylphenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
4-Chloroaniline	μg/kg dw	0 / 21	nd	nd	nd	97	200	
4-Chlorophenyl phenyl ether	μg/kg dw	0 / 21	nd	nd	nd	19	39	
4-Methylphenol	μg/kg dw	17 / 21	16 J	200	81	20	20	
4-Nitroaniline	μg/kg dw	0 / 21	nd	nd	nd	97	200	

		DETECTION	DETECT	ED CONCENT	RATION	REPORT	REPORTING LIMIT ^a	
ANALYTE	Unit	FREQUENCY	Мимим	Махімим	M EAN ^b	Мимим	MAXIMUM	
4-Nitrophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
Benzoic acid	μg/kg dw	0 / 21	nd	nd	nd	190	390	
Benzyl alcohol	μg/kg dw	0 / 21	nd	nd	nd	19	39	
bis(2-chloroethoxy)methane	μg/kg dw	0 / 21	nd	nd	nd	19	39	
bis(2-chloroethyl)ether	μg/kg dw	0 / 21	nd	nd	nd	19	39	
bis(2-chloroisopropyl)ether	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Carbazole	μg/kg dw	12 / 21	16 J	28	22	20	39	
Hexachlorobenzene	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
Hexachlorobutadiene	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
Hexachlorocyclopentadiene	μg/kg dw	0 / 21	nd	nd	nd	97	200	
Hexachloroethane	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Isophorone	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Nitrobenzene	μg/kg dw	0 / 21	nd	nd	nd	19	39	
N-Nitroso-di-n-propylamine	μg/kg dw	0 / 21	nd	nd	nd	97	200	
N-Nitrosodiphenylamine	μg/kg dw	0 / 21	nd	nd	nd	19	39	
Pentachlorophenol	μg/kg dw	0 / 21	nd	nd	nd	97	200	
Phenol	μg/kg dw	17 / 21	36	630	380	20	20	
Pesticides								
2,4'-DDD	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	
2,4'-DDE	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	
2,4'-DDT	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	
4,4'-DDD	μg/kg dw	0 / 21	nd	nd	nd	1.9	61	
4,4'-DDE	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	
4,4'-DDT	μg/kg dw	0 / 21	nd	nd	nd	1.9	270	
Total DDTs (calc'd)	μg/kg dw	0 / 21	nd	nd	nd	nc	nc	
Aldrin	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
Dieldrin	μg/kg dw	0 / 21	nd	nd	nd	1.9	110	
Total aldrin/dieldrin (calc'd)	μg/kg dw	0 / 21	nd	nd	nd	nc	nc	
alpha-BHC	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
beta-BHC	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
delta-BHC	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
gamma-BHC	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
alpha-Chlordane	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
gamma-Chlordane	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
Total Chlordane (calc'd)	μg/kg dw	0 / 21	nd	nd	nd	nc	nc	
alpha-Endosulfan	μg/kg dw	0 / 21	nd	nd	nd	0.95	17	
beta-Endosulfan	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	
Endosulfan sulfate	μg/kg dw	0 / 21	nd	nd	nd	1.9	62	
Endrin	μg/kg dw	0 / 21	nd	nd	nd	1.9	94	
Endrin aldehyde	μg/kg dw	0 / 21	nd	nd	nd	1.9	34	

		DETECTION	D ETECT	ED CONCENT	RATION	REPORT	ING LIMIT ^a
Analyte	Unit	FREQUENCY	Мімімим	Махімим	MEAN	Мінімим	MAXIMUM
Endrin ketone	μg/kg dw	0 / 21	nd	nd	nd	1.9	34
Heptachlor	μg/kg dw	0 / 21	nd	nd	nd	0.95	17
Heptachlor epoxide	μg/kg dw	0 / 21	nd	nd	nd	0.95	66
Methoxychlor	μg/kg dw	0 / 21	nd	nd	nd	9.5	170
Mirex	μg/kg dw	0 / 21	nd	nd	nd	1.9	34
Cis-Nonachlor	μg/kg dw	0 / 21	nd	nd	nd	1.9	34
Oxychlordane	μg/kg dw	0 / 21	nd	nd	nd	1.9	34
Toxaphene	μg/kg dw	0 / 21	nd	nd	nd	95	1,700
Trans-Nonachlor	μg/kg dw	0 / 21	nd	nd	nd	1.9	34
Grain size				•			
Total Gravel	% dw	21 / 21	0.1	52.5	20	na	na
Total sand (calc'd)	% dw	21 / 21	29.1	78.1	63	na	na
Total silt (calc'd)	% dw	20 / 21	1.5	44.8	15	na	na
Total clay (calc'd)	% dw	20 / 21	1.5	16.9	6.4	na	na
Fines (percent silt + clay)	% dw	20 / 21	3.0	61.7	21	na	na
Conventional parameters							
Total organic carbon (TOC)	% dw	21 / 21	0.351	2.30	1.22	na	na
Total solids	% ww	21 / 21	57.6	93.6	73.4	na	na

a RL range for non-detect samples

dw - dry weight

na - not applicable

nc - not calculated

nd - not detected

J - estimated value

Reported mean concentrations are the average of the detected concentrations only; RLs were not included in the mean concentration calculation

Table A-2a. Concentrations of analytes in recontamination monitoring sediment samples: EW-RM06-1 through EW-RM06-15

		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7	EW-RM-8	EW-RM-10	EW-RM-15
ANALYTE	UNIT	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7	EW-RM06-8	EW-RM06-10	EW-RM06-15
Metals and trace elements											
Antimony	mg/kg dw	7 UJ	6 UJ	6 UJ	7 UJ	7 UJ	7 UJ	7 UJ	6 UJ	7 UJ	8 UJ
Arsenic	mg/kg dw	7 U	6 U	6 U	7 U	7 U	7 U	7 U	6 U	8	11
Cadmium	mg/kg dw	0.5	0.2 U	0.2 U	0.4	0.3 U	0.4	0.3	0.2 U	0.3	2.4
Chromium	mg/kg dw	22.0	22.8	24.1	19.9	20.7	18.6	21.1	17.7	22.7	43.9
Copper	mg/kg dw	38.7	26.5	17.1	34.8	33.2	33.4	33.8	17.3	42.4	78.4
Lead	mg/kg dw	27	10	5	23	17	19	22	6	23	131
Mercury	mg/kg dw	0.17	0.06	0.05 U	0.15	0.13	0.13	0.12	0.05 U	0.67	0.78
Nickel	mg/kg dw	14	25	19	16	18	18	16	19	21	26
Silver	mg/kg dw	0.4 U	0.3 U	0.3 U	0.4 U	2.2					
Zinc	mg/kg dw	68.7	48.7	36.6	62.3	52.7	58.1	60	36.3	66.4	249
PAHs											
2-Chloronaphthalene	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
2-Methylnaphthalene	μg/kg dw	20	20 U	20 U	19 J	20 U	18 J	20 U	20 U	19 J	300
Acenaphthene	μg/kg dw	16 J	20 U	20 U	12 J	11 J	25	19 J	20 U	18 J	96
Acenaphthylene	μg/kg dw	18 J	20 U	20 U	20	18 J	18 J	14 J	20 U	20	44
Anthracene	μg/kg dw	70	25	20 U	69	64	83	86	20 U	86	230
Benzo(a)anthracene	μg/kg dw	120	39	15 J	120	110	120	110	17 J	150	360
Benzo(a)pyrene	μg/kg dw	140	45	15 J	140	120	130	130	16 J	180	330
Benzo(b)fluoranthene	μg/kg dw	190	62	24	260	180	220	200	27	290	420
Benzo(g,h,i)perylene	μg/kg dw	50	19 J	20 U	42	34	44	34	20 U	48	110
Benzo(k)fluoranthene	μg/kg dw	140	46	21	160	160	160	150	19 J	190	410
Total Benzofluoranthenes (calc'd)	μg/kg dw	330	108	45	420	340	380	350	46 J	480	830
Chrysene	μg/kg dw	180	64	21	170	170	180	160	24	230	520
Dibenzo(a,h)anthracene	μg/kg dw	20	20 U	20 U	15 J	12 J	16 J	14 J	20 U	19 J	30 J
Dibenzofuran	μg/kg dw	20 U	24	17 J	20 U	17 J	81				
Fluoranthene	μg/kg dw	300	88	34	280	230	320	270	33	310	920
Fluorene	μg/kg dw	20	20 U	20 U	18 J	17 J	35	27	20 U	25	180

		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7	EW-RM-8	EW-RM-10	EW-RM-15
ANALYTE	UNIT	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7	EW-RM06-8	EW-RM06-10	EW-RM06-15
Indeno(1,2,3-cd)pyrene	μg/kg dw	50	18 J	20 U	44	35	41	34	20 U	49	86
Naphthalene	μg/kg dw	24	20 U	20 U	22	19 J	47	21	20 U	30	120
Phenanthrene	μg/kg dw	110	32	15 J	98	77	120	100	15 J	120	380
Pyrene	μg/kg dw	220	60	36	340	250	310	240	34	310	1,200
Total HPAH (calc'd)	μg/kg dw	1,410	441 J	166 J	1,570 J	1,300 J	1,540 J	1,340 J	170 J	1,780 J	4,400 J
Total LPAH (calc'd)	μg/kg dw	260 J	57	15 J	239 J	206 J	330 J	270 J	15 J	300 J	1,050
Carcinogenic PAHs	μg/kg dw	200	62 J	31 J	210 J	180 J	190 J	190 J	23 J	260 J	470 J
Total PAH (calc'd)	μg/kg dw	1,670 J	498 J	181 J	1,810 J	1,510 J	1,870 J	1,610 J	185 J	2,080 J	5,400 J
Phthalates											
Bis(2-ethylhexyl)phthalate	μg/kg dw	220	76	31	250	200	260	240	74	260	2,800
Butyl benzyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	14 J	18 J	22	20 U	25	39 U
Diethyl phthalate	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Dimethyl phthalate	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Di-n-butyl phthalate	μg/kg dw	20 U	20 U	20 U	13 J	20 U	38	20 U	20 U	20 U	120
Di-n-octyl phthalate	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Other SVOCs											
1,2,4-Trichlorobenzene	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
1,2-Dichlorobenzene	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
1,3-Dichlorobenzene	μg/kg dw	20 U	19 U	20 U	20 U	28	20 J				
1,4-Dichlorobenzene	μg/kg dw	18 J	68	39	14 J	22	82	22	20 U	28	170
2,4,5-Trichlorophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2,4,6-Trichlorophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2,4-Dichlorophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2,4-Dimethylphenol	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
2,4-Dinitrophenol	μg/kg dw	200 UJ	190 UJ	200 UJ	200 UJ	200 UJ	390 UJ				
2,4-Dinitrotoluene	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2,6-Dinitrotoluene	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2-Chlorophenol	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
2-Methylphenol	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
2-Nitroaniline	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
2-Nitrophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
3,3'-Dichlorobenzidine	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U

		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7	EW-RM-8	EW-RM-10	EW-RM-15
A NALYTE	Unit	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7	EW-RM06-8	EW-RM06-10	EW-RM06-15
3-Nitroaniline	μg/kg dw	98 UJ	99 UJ	97 UJ	100 UJ	98 UJ	97 UJ	97 U	100 U	98 U	200 U
4,6-Dinitro-o-cresol	μg/kg dw	200 U	190 U	200 UJ	200 UJ	200 UJ	390 UJ				
4-Bromophenyl phenyl ether	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
4-Chloro-3-methylphenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
4-Chloroaniline	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
4-Chlorophenyl phenyl ether	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
4-Methylphenol	μg/kg dw	56	51	33	55	33	170	99	20 U	100	100
4-Nitroaniline	μg/kg dw	98 UJ	99 UJ	97 UJ	100 UJ	98 UJ	97 UJ	97 U	100 U	98 U	200 U
4-Nitrophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
Benzoic acid	μg/kg dw	200 U	190 U	200 U	200 U	200 U	390 U				
Benzyl alcohol	μg/kg dw	20 U	19 U	20 UJ	20 UJ	20 UJ	39 UJ				
bis(2-chloroethoxy)methane	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
bis(2-chloroethyl)ether	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
bis(2-chloroisopropyl)ether	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Carbazole	μg/kg dw	21	20 U	20 U	18 J	16 J	22	27	20 U	24	39 U
Hexachlorobenzene	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
Hexachlorobutadiene	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
Hexachlorocyclopentadiene	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
Hexachloroethane	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Isophorone	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Nitrobenzene	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
N-Nitroso-di-n-propylamine	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
N-Nitrosodiphenylamine	μg/kg dw	20 U	19 U	20 U	20 U	20 U	39 U				
Pentachlorophenol	μg/kg dw	98 U	99 U	97 U	100 U	98 U	97 U	97 U	100 U	98 U	200 U
Phenol	μg/kg dw	630	330	44	450	220	400	520	20 U	470	340
PCBs											
Aroclor-1016	μg/kg dw	29 U	20 U	19 U	56 U	54 U	270 U	19 U	19 U	28 U	510 U
Aroclor-1221	μg/kg dw	29 U	20 U	19 U	56 U	54 U	270 U	19 U	19 U	28 U	340 U
Aroclor-1232	μg/kg dw	31 U	20 U	19 U	56 U	54 U	270 U	19 U	19 U	28 U	780 U
Aroclor-1242	μg/kg dw	29 U	20 U	19 U	56 U	54 U	270 U	19 U	19 U	28 U	540 U
Aroclor-1248	μg/kg dw	44 U	20 U	19 U	89 U	54 U	270 U	29 U	19 U	28 U	680 U
Aroclor-1254	μg/kg dw	160	20 U	19 U	1,500 U	94	270 U	88	10 J	78	1,200

		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7	EW-RM-8	EW-RM-10	EW-RM-15
ANALYTE	UNIT	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7	EW-RM06-8	EW-RM06-10	EW-RM06-15
Aroclor-1260	μg/kg dw	280	39	19 U	2,600	120	160 J	120	10 J	120	1,200
Total PCBs (calc'd)	μg/kg dw	440	39	19 U	2,600	210	160 J	210	20 J	200	2,400
Pesticides											
2,4'-DDD	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
2,4'-DDE	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
2,4'-DDT	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
4,4'-DDD	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	61 U
4,4'-DDE	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
4,4'-DDT	μg/kg dw	29 U	2.0 U	1.9 U	24 U	38 U	27 U	17 U	2.0 U	20 U	270 U
Total DDTs (calc'd)	μg/kg dw	29 U	2.0 U	1.9 U	24 U	38 U	27 U	17 U	2.0 U	20 U	270 U
Aldrin	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
Dieldrin	μg/kg dw	7.7 U	2.0 U	1.9 U	5.6 U	9.8 U	27 U	5.6 U	2.0 U	5.5 U	110 U
Total aldrin/dieldrin (calc'd)	μg/kg dw	7.7 U	2.0 U	1.9 U	5.6 U	9.8 U	27 U	5.6 U	2.0 U	5.5 U	110 U
alpha-BHC	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
beta-BHC	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
delta-BHC	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
gamma-BHC	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
alpha-Chlordane	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
gamma-Chlordane	μg/kg dw	6.3 U	0.98 U	0.95 U	5.3 U	2.7 U	13 U	3.9 U	1.0 U	4.4 U	17 U
alpha-Endosulfan	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
beta-Endosulfan	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Endosulfan sulfate	μg/kg dw	9.6 U	2.0 U	1.9 U	8.2 U	11 U	27 U	5.4 U	2.0 U	7.9 U	62 U
Endrin	μg/kg dw	8.7 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	6.6 U	2.0 U	7.7 U	94 U
Endrin aldehyde	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Endrin ketone	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Heptachlor	μg/kg dw	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U	1.0 U	1.4 U	17 U
Heptachlor epoxide	μg/kg dw	6.4 U	0.98 U	0.95 U	6.5 U	2.7 U	13 U	4.0 U	1.0 U	4.6 U	66 U
Methoxychlor	μg/kg dw	15 U	9.8 U	9.5 U	28 U	27 U	130 U	9.7 U	10 U	14 U	170 U
Mirex	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Cis-Nonachlor	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Oxychlordane	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Toxaphene	μg/kg dw	150 U	98 U	95 U	280 U	270 U	1,300 U	97 U	100 U	140 U	1,700 U

		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7	EW-RM-8	EW-RM-10	EW-RM-15
ANALYTE	UNIT	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7	EW-RM06-8	EW-RM06-10	EW-RM06-15
Trans-Nonachlor	μg/kg dw	2.9 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	1.9 U	2.0 U	2.9 U	34 U
Total Chlordane (calc'd)	μg/kg dw	6.3 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	3.9 U	2.0 U	4.4 U	34 U
Grain size											
Gravel	% dw	0.1	27.4	21.5	0.1	2.5	9.9	1.2	18.8	3.0	45.2
Very coarse sand	% dw	1.6	23.6	31.3	0.6	7.1	13.0	4.2	22.9	5.3	3.7
Coarse sand	% dw	2.6	21.0	27.1	5.9	17.1	19.5	12.1	28.2	13.5	4.7
Medium sand	% dw	11.5	11.8	12.6	25.9	22.9	16.2	23.4	19.5	21.8	6.3
Fine sand	% dw	30.4	5.2	2.6	29.9	20.6	11.3	25.7	4.8	17.8	8.3
Very fine sand	% dw	18.4	3.0	0.8	13.5	10.4	8.3	11.0	1.0	11.5	6.1
Coarse silt	% dw	10.1	1.6	0.1 U	6.0	5.2	4.6	5.0	0.5	6.6	3.1
Medium silt	% dw	8.1	1.5	0.6	3.9	3.9	4.7	4.8	0.7	5.3	8.4
Fine silt	% dw	5.3	1.2	0.5	3.4	2.7	3.6	3.2	0.8	4.1	5.6
Very fine silt	% dw	3.3	0.9	0.6	2.8	2.1	2.2	2.6	0.7	3.2	2.2
Clay (phi 8-9)	% dw	2.5	0.8	0.6	2.1	1.6	2.0	2.2	0.6	2.4	1.8
Clay (phi 9-10)	% dw	1.6	0.5	0.4	1.6	1.3	1.7	1.8	0.4	1.9	1.3
Clay (phi 10+)	% dw	4.3	1.2	1.3	4.4	2.9	3.1	2.9	1.0	3.7	3.2
Total Gravel	% dw	0.1	27.4	21.5	0.1	2.5	9.9	1.2	18.8	3.0	45.2
Total Sand (calc'd)	% dw	64.5	64.6	74.4	75.8	78.1	68.3	76.4	76.4	69.9	29.1
Total Silt (calc'd)	% dw	26.8	5.2	1.7	16.1	13.9	15.1	15.6	2.7	19.2	19.3
Total Clay (calc'd)	% dw	8.4	2.5	2.3	8.1	5.8	6.8	6.9	2.0	8.0	6.3
Fines (percent silt+clay)	% dw	35.2	7.7	4.0	24.2	19.7	21.9	22.5	4.7	27.2	25.6
Conventional parameters											
Total organic carbon (TOC)	% dw	1.36	0.863	0.679	1.54	1.31	1.32	1.30	0.880	0.876	2.30
Total solids	% ww	66.70	83.80	85.30	68.10	69.90	71.00	67.40	83.60	66.10	58.30

dw - dry weight

ww - wet weight

na - not analyzed

Concentration in italics indicates that laboratory replicate was run for sample. Value reported was based on averaging rules in Appendix B

Table A-2b. Concentrations of analytes in recontamination monitoring sediment samples: EW-RM06-16 through EW-RM06-28

		EW-RM-16		EW-RM-18	EW-RM-19	EW-RM-20	EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
ANALYTE	UNIT	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19	EW-RM06-20	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Metals and trace elements												
Antimony	mg/kg dw	7 UJ	7 UJ	5 UJ	7 UJ	5 UJ	7 UJ	7 UJ	7 UJ	8 UJ	6 UJ	6 UJ
Arsenic	mg/kg dw	8	7	5 U	7	6	8	8	7	11	6 U	6
Cadmium	mg/kg dw	0.4	0.4	0.2 U	0.5	0.2 U	0.4	0.3 U	0.6	0.7	0.2 U	0.2 U
Chromium	mg/kg dw	23.5	22.0	18.1	22.4	15.7	21.1	23.6	20.7	30.1	19.9	20.6
Copper	mg/kg dw	33.2	39.2	14.9	35.3	17.2	35.0	30.3	30.2	49.1	19.1	22.5
Lead	mg/kg dw	26	25	3	34	5	22	16	27	39	8	11
Mercury	mg/kg dw	0.16	0.15	0.04 U	0.38	0.05 U	0.17	0.21	0.28	0.33	0.05 U	0.08
Nickel	mg/kg dw	21	19	17	20	18	18	25	17	22	22	20
Silver	mg/kg dw	0.4 U	0.4 U	0.3 U	0.4 U	0.3 U	0.4 U	0.4 U	0.4 U	0.5	0.3 U	0.4 U
Zinc	mg/kg dw	70.3	74.8	29.9	74.8	33.4	66.6	54.3	70.1	95	38.4	41.9
PAHs												
2-Chloronaphthalene	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
2-Methylnaphthalene	μg/kg dw	20 U	20 U	20 U	19 J	20 U	19 U	20 U	33	29	20 U	20 U
Acenaphthene	μg/kg dw	32	27	20 U	17 J	20 U	13 J	20 U	27	30	20 U	20 U
Acenaphthylene	μg/kg dw	23	15 J	20 U	17 J	20 U	17 J	20 U	22	31	20 U	20 U
Anthracene	μg/kg dw	90	66	20 U	90	20 U	75	36	80	110	20 U	30
Benzo(a)anthracene	μg/kg dw	140	100	20 U	130	20 U	140	55	130	180	13 J	42
Benzo(a)pyrene	μg/kg dw	170	120	20 U	140	20 U	160	52	130	190	15 J	49
Benzo(b)fluoranthene	μg/kg dw	230	190	20 U	240	12 J	230	76	210	320	23	72
Benzo(g,h,i)perylene	μg/kg dw	45	34	20 U	43	20 U	37	17 J	42	66	20 U	16 J
Benzo(k)fluoranthene	μg/kg dw	180	120	20 U	150	10 J	170	47	140	220	14 J	53
Total Benzofluoranthenes (calc'd)	μg/kg dw	410	310	20 U	390	22 J	400	123	350	540	37 J	125
Chrysene	μg/kg dw	220	160	20 U	190	11 J	210	80	170	260	17 J	67
Dibenzo(a,h)anthracene	μg/kg dw	17 J	13 J	20 U	11 J	20 U	12 J	20 U	13 J	21	20 U	20 U
Dibenzofuran	μg/kg dw	24	19 J	20 U	20 U	20 U	19 U	20 U	23	25	20 U	20 U
Fluoranthene	μg/kg dw	370	300	20 U	340	27	290	120	380	510	32	94
Fluorene	μg/kg dw	30	24	20 U	29	20 U	23	16 J	36	48	20 U	20 U

		EW-RM-16		EW-RM-18	EW-RM-19	EW-RM-20	EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
ANALYTE	Unit	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19	EW-RM06-20	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Indeno(1,2,3-cd)pyrene	μg/kg dw	49	35	20 U	42	20 U	39	17 J	40	61	20 U	17 J
Naphthalene	μg/kg dw	34	25	20 U	29	20 U	21	15 J	30	40	20 U	20 U
Phenanthrene	μg/kg dw	130	92	20 U	130	19 J	110	56	150	190	12 J	37
Pyrene	μg/kg dw	220	190	20 U	330	24	250	160	340	530	39	83
Total HPAH (calc'd)	μg/kg dw	1,640 J	1,260 J	20 U	1,620 J	84 J	1,540 J	620 J	1,600 J	2,360	153 J	493 J
Total LPAH (calc'd)	μg/kg dw	340	249 J	20 U	310 J	19 J	260 J	123 J	350	450	12 J	67
Carcinogenic PAHs	μg/kg dw	240 J	170 J	0 U	200 J	2 J	220 J	80 J	190 J	280	30 J	76 J
Total PAH (calc'd)	μg/kg dw	1,980 J	1,510 J	20 U	1,930 J	103 J	1,800 J	750 J	1,940 J	2,810	165 J	560 J
Phthalates												
Bis(2-ethylhexyl)phthalate	μg/kg dw	230	210	20 U	220	23	270	33	380	270	66	76
Butyl benzyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Diethyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Dimethyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Di-n-butyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U	14 J	20 U	20 U	20 U
Di-n-octyl phthalate	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Other SVOCs												
1,2,4-Trichlorobenzene	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
1,2-Dichlorobenzene	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
1,3-Dichlorobenzene	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
1,4-Dichlorobenzene	μg/kg dw	15 J	24	20 U	13 J	20 U	17 J	20 U	15 J	23	20 U	20 U
2,4,5-Trichlorophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2,4,6-Trichlorophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2,4-Dichlorophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2,4-Dimethylphenol	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
2,4-Dinitrophenol	μg/kg dw	200 UJ	200 UJ	200 UJ	200 UJ	200 UJ	190 UJ	200 UJ				
2,4-Dinitrotoluene	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2,6-Dinitrotoluene	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2-Chlorophenol	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
2-Methylphenol	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
2-Nitroaniline	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
2-Nitrophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
3,3'-Dichlorobenzidine	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U

		EW-RM-16		EW-RM-18	EW-RM-19	EW-RM-20	EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
ANALYTE	UNIT	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19	EW-RM06-20	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
3-Nitroaniline	μg/kg dw	100 UJ	98 UJ	100 U	98 U	98 U	97 U	100 U	99 UJ	99 UJ	98 U	98 U
4,6-Dinitro-o-cresol	μg/kg dw	200 U	200 U	200 UJ	200 UJ	200 UJ	190 UJ	200 UJ	200 U	200 U	200 UJ	200 UJ
4-Bromophenyl phenyl ether	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
4-Chloro-3-methylphenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
4-Chloroaniline	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
4-Chlorophenyl phenyl ether	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
4-Methylphenol	μg/kg dw	120	80	20 U	200	20 U	120	16 J	24	57	20 U	61
4-Nitroaniline	μg/kg dw	100 UJ	98 UJ	100 U	98 U	98 U	97 U	100 U	99 UJ	99 UJ	98 U	98 U
4-Nitrophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
Benzoic acid	μg/kg dw	200 U	200 U	200 U	200 U	200 U	190 U	200 U				
Benzyl alcohol	μg/kg dw	20 U	20 U	20 UJ	20 UJ	20 UJ	19 UJ	20 UJ	20 U	20 U	20 UJ	20 UJ
bis(2-chloroethoxy)methane	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
bis(2-chloroethyl)ether	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
bis(2-chloroisopropyl)ether	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Carbazole	μg/kg dw	24	22	20 U	23	20 U	23	20 U	20	28	20 U	20 U
Hexachlorobenzene	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Hexachlorobutadiene	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Hexachlorocyclopentadiene	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
Hexachloroethane	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Isophorone	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Nitrobenzene	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
N-Nitroso-di-n-propylamine	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
N-Nitrosodiphenylamine	μg/kg dw	20 U	20 U	20 U	20 U	20 U	19 U	20 U				
Pentachlorophenol	μg/kg dw	100 U	98 U	100 U	98 U	98 U	97 U	100 U	99 U	99 U	98 U	98 U
Phenol	μg/kg dw	560	390	20 U	480	20 U	330	36	310	590	20 U	290
PCBs												
Aroclor-1016	μg/kg dw	28 U	55 U	20 U	19 U	20 U	91 U	20 U	290 U	68 U	20 U	19 U
Aroclor-1221	μg/kg dw	28 U	55 U	20 U	19 U	20 U	91 U	20 U	290 U	68 U	20 U	19 U
Aroclor-1232	μg/kg dw	28 U	55 U	20 U	19 U	20 U	91 U	20 U	290 U	68 U	20 U	19 U
Aroclor-1242	μg/kg dw	28 U	55 U	20 U	19 U	20 U	91 U	20 U	290 U	68 U	20 U	19 U
Aroclor-1248	μg/kg dw	33 U	55 U	20 U	29 U	20 U	91 U	20 U	290 U	68 U	20 U	19 U
Aroclor-1254	μg/kg dw	100	100	20 U	130	20 J	83 J	36	290 U	190	56	35

		EW-RM-16		EW-RM-18	EW-RM-19	EW-RM-20	EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
ANALYTE	UNIT	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19	EW-RM06-20	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Aroclor-1260	μg/kg dw	130	230	20 U	350	25	120	59	210 J	260	140	44
Total PCBs (calc'd)	μg/kg dw	230	330	20 U	480	45 J	200 J	95	210 J	450	200	79
Pesticides												
2,4'-DDD	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
2,4'-DDE	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
2,4'-DDT	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
4,4'-DDD	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
4,4'-DDE	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
4,4'-DDT	μg/kg dw	21 U	38 U	2.0 U	18 U	1.9 U	15 U	7.0 U	29 U	42 U	2.0 U	11 U
Total DDTs (calc'd)	μg/kg dw	21 U	38 U	2.0 U	18 U	1.9 U	15 U	7.0 U	29 U	42 U	2.0 U	11 U
Aldrin	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Dieldrin	μg/kg dw	6.5 U	11 U	2.0 U	5.2 U	1.9 U	9.1 U	2.0 U	29 U	11 U	2.0 U	2.0 U
Total aldrin/dieldrin (calc'd)	μg/kg dw	6.5 U	11 U	2.0 U	5.2 U	1.9 U	9.1 U	2.0 U	29 U	11 U	2.0 U	2.0 U
alpha-BHC	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
beta-BHC	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
delta-BHC	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
gamma-BHC	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
alpha-Chlordane	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
gamma-Chlordane	μg/kg dw	4.3 U	6.4 U	0.99 U	4.4 U	0.96 U	4.6 U	0.99 U	15 U	8.8 U	0.98 U	1.6 U
alpha-Endosulfan	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
beta-Endosulfan	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Endosulfan sulfate	μg/kg dw	6.7 U	12 U	2.0 U	6.6 U	1.9 U	9.1 U	2.0 U	29 U	12 U	2.0 U	3.8 U
Endrin	μg/kg dw	7.5 U	10 U	2.0 U	5.2 U	1.9 U	9.1 U	2.0 U	29 U	10 U	2.0 U	2.0 U
Endrin aldehyde	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Endrin ketone	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Heptachlor	μg/kg dw	1.4 U	2.7 U	0.99 U	0.97 U	0.96 U	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Heptachlor epoxide	μg/kg dw	4.6 U	6.7 U	0.99 U	3.6 U	0.96 U	4.6 U	0.99 U	15 U	14 U	0.98 U	0.98 U
Methoxychlor	μg/kg dw	14 U	27 U	9.9 U	9.7 U	9.6 U	46 U	9.9 U	150 U	34 U	9.8 U	9.8 U
Mirex	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Cis-Nonachlor	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Oxychlordane	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Toxaphene	μg/kg dw	140 U	270 U	99 U	97 U	96 U	460 U	99 U	1,500 U	340 U	98 U	98 U

		EW-RM-16		EW-RM-18	EW-RM-19	EW-RM-20	EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
ANALYTE	Unit	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19	EW-RM06-20	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Trans-Nonachlor	μg/kg dw	2.8 U	5.5 U	2.0 U	1.9 U	1.9 U	9.1 U	2.0 U	29 U	6.8 U	2.0 U	2.0 U
Total Chlordane (calc'd)	μg/kg dw	4.3 U	6.4 U	2.0 U	4.4 U	1.9 U	9.1 U	2.0 U	29 U	8.8 U	2.0 U	2.0 U
Grain size												
Gravel	% dw	13.9	14.6	35.6	52.5	30.9	19.7	19.6	4.0	0.6	27.4	15.9
Very coarse sand	% dw	14.0	12.4	37.6	7.5	28.5	16.4	17.8	7.5	1.0	31.9	20.4
Coarse sand	% dw	18.6	18.3	22.3	10.4	27.0	16.8	13.3	13.8	2.0	26.8	26.7
Medium sand	% dw	18.5	18.0	4.1	9.6	9.2	12.5	6.2	16.8	5.1	8.6	20.1
Fine sand	% dw	9.8	9.1	0.2	4.5	1.0	7.9	1.2	11.5	11.2	0.9	5.7
Very fine sand	% dw	6.3	6.2	0.1 U	3.0	0.3	6.7	2.1	8.9	18.3	0.4	2.6
Coarse silt	% dw	3.6	6.0	nd	1.0	0.2	4.6	6.5	8.2	14.9	0.4	1.7
Medium silt	% dw	3.9	4.1	nd	2.5	0.5	3.6	8.1	7.6	13.1	0.6	1.6
Fine silt	% dw	3.3	2.9	nd	2.5	0.4	3.6	6.2	6.2	9.9	0.7	1.2
Very fine silt	% dw	2.3	2.5	nd	1.9	0.4	2.3	5.0	4.5	6.9	0.6	1.0
Clay (phi 8-9)	% dw	1.8	1.8	nd	1.5	0.4	1.7	4.4	3.6	5.4	0.6	1.0
Clay (phi 9-10)	% dw	1.2	1.2	nd	1.0	0.2	1.5	2.8	2.5	3.7	0.2	0.6
Clay (phi 10+)	% dw	2.8	2.8	nd	2.2	0.9	2.8	6.9	5.2	7.8	0.8	1.5
Total Gravel	% dw	13.9	14.6	35.6	52.5	30.9	19.7	19.6	4.0	0.6	27.4	15.9
Total Sand (calc'd)	% dw	67.2	64.0	64.2	35.0	66.0	60.3	40.6	58.5	37.6	68.6	75.5
Total Silt (calc'd)	% dw	13.1	15.5	nd	7.9	1.5	14.1	25.8	26.5	44.8	2.3	5.5
Total Clay (calc'd)	% dw	5.8	5.8	nd	4.7	1.5	6.0	14.1	11.3	16.9	1.6	3.1
Fines (percent silt+clay)	% dw	18.9	21.3	nd	12.6	3.0	20.1	39.9	37.8	61.7	3.9	8.6
Conventional parameters												
Total organic carbon (TOC)	% dw	1.44	1.70	0.567	1.60	0.351	1.66	1.33	1.45	1.34	0.500	1.16
Total solids	% ww	71.40	70.90	93.60	65.10	88.20	70.0	73.20	66.15	57.60	84.40	80.20

dw - dry weight

ww - wet weight

nd - not detected

Concentration in italics indicates that laboratory replicate was run for sample. Value reported was based on averaging rules in Appendix B.

Table A-3a. Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-1 through EW-RM06-7

						EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7
Metals and trace elements												
Antimony	mg/kg dw			150	200	7 UJ	6 UJ	6 UJ	7 UJ	7 UJ	7 UJ	7 UJ
Arsenic	mg/kg dw	57	93			7 U	6 U	6 U	7 U	7 U	7 U	7 U
Cadmium	mg/kg dw	5.1	6.7			0.5	0.2 U	0.2 U	0.4	0.3 U	0.4	0.3
Chromium	mg/kg dw	260	270			22.0	22.8	24.1	19.9	20.7	18.6	21.1
Copper	mg/kg dw	390	390			38.7	26.5	17.1	34.8	33.2	33.4	33.8
Lead	mg/kg dw	450	530			27	10	5	23	17	19	22
Mercury	mg/kg dw	0.41	0.59			0.17	0.06	0.05 U	0.15	0.13	0.13	0.12
Nickel	mg/kg dw			140	370	14	25	19	16	18	18	16
Silver	mg/kg dw	6.1	6.1			0.4 U	0.3 U	0.3 U	0.4 U	0.4 U	0.4 U	0.4 U
Zinc	mg/kg dw	410	960			68.7	48.7	36.6	62.3	52.7	58.1	60
PAHs												
2-Methylnaphthalene	mg/kg OC	38	64			1.5	2.3 U	2.9 U	1.2 J	1.5 U	1.4 J	1.5 U
Acenaphthene	mg/kg OC	16	57			1.2 J	2.3 U	2.9 U	0.78 J	0.84 J	1.9	1.5 J
Acenaphthylene	mg/kg OC	66	66			1.3 J	2.3 U	2.9 U	1.3	1.4 J	1.4 J	1.1 J
Anthracene	mg/kg OC	220	1200			5.1	2.9	2.9 U	4.5	4.9	6.3	6.6
Benzo(a)anthracene	mg/kg OC	110	270			8.8	4.5	2.2 J	7.8	8.4	9.1	8.5
Benzo(a)pyrene	mg/kg OC	99	210			10	5.2	2.2 J	9.1	9.2	9.8	10
Benzo(g,h,i)perylene	mg/kg OC	31	78			3.7	2.2 J	2.9 U	2.7	2.6	3.3	2.6
Total Benzofluoranthenes (calc'd)	mg/kg OC	230	450			24	13	6.6	27	26	29	27
Chrysene	mg/kg OC	110	460			13	7.4	3.1	11	13	14	12
Dibenzo(a,h)anthracene	mg/kg OC	12	33			1.5	2.3 U	2.9 U	0.97 J	0.92 J	1.2 J	1.1 J
Dibenzofuran	mg/kg OC	15	58			1.5 U	2.3 U	2.9 U	1.3 U	1.5 U	1.8	1.3 J
Fluoranthene	mg/kg OC	160	1200			22	10	5.0	18	18	24	21
Fluorene	mg/kg OC	23	79			1.5	2.3 U	2.9 U	1.2 J	1.3 J	2.7	2.1
Indeno(1,2,3-cd)pyrene	mg/kg OC	34	88			3.7	2.1 J	2.9 U	2.9	2.7	3.1	2.6

Table A-3a, cont.

				,		EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7
Naphthalene	mg/kg OC	99	170			1.8	2.3 U	2.9 U	1.4	1.5 J	3.6	1.6
Phenanthrene	mg/kg OC	100	480			8.1	3.7	2.2 J	6.4	5.9	9.1	7.7
Pyrene	mg/kg OC	1000	1400			16	7.0	5.3	22	19	23	18
Total HPAH (calc'd)	mg/kg OC	960	5300			100	51 J	24 J	100 J	99 J	120 J	100 J
Total LPAH (calc'd)	mg/kg OC	370	780			19 J	6.6	2.2 J	16 J	16 J	25 J	21 J
Phthalates												
Bis(2-ethylhexyl)phthalate	mg/kg OC	47	78			16	8.8	4.6	16	15	20	18
Butyl benzyl phthalate	mg/kg OC	4.9	64			1.5 U	2.3 U	2.9 U	1.3 U	1.1 J	1.4 J	1.7
Diethyl phthalate	mg/kg OC	61	110			1.5 U	2.3 U	2.9 U	1.3 U	1.5 U	1.4 U	1.5 U
Dimethyl phthalate	mg/kg OC	53	53			1.5 U	2.3 U	2.9 U	1.3 U	1.5 U	1.4 U	1.5 U
Di-n-butyl phthalate	mg/kg OC	220	1700			1.5 U	2.3 U	2.9 U	0.84 J	1.5 U	2.9	1.5 U
Di-n-octyl phthalate	mg/kg OC	58	4500			1.5 U	2.3 U	2.9 U	1.3 U	1.5 U	1.4 U	1.5 U
Other SVOCs												
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8			1.5 U	<u>2.3 U</u>	<u>2.9 U</u>	1.3 U	1.5 U	1.4 U	1.5 U
1,2-Dichlorobenzene	mg/kg OC	2.3	2.3			1.5 U	2.3 U	<u>2.9 U</u>	1.3 U	1.5 U	1.4 U	1.5 U
1,3-Dichlorobenzene	μg/kg dw			170	nv	20 U	20 U	20 U	20 U	20 U	19 U	20 U
1,4-Dichlorobenzene	mg/kg OC	3.1	9			1.3 J	7.9	5.7	0.91 J	1.7	6.2	1.7
2,4-Dimethylphenol	μg/kg dw	29	29			20 U	20 U	20 U	20 U	20 U	19 U	20 U
2-Methylphenol	μg/kg dw	63	63			20 U	20 U	20 U	20 U	20 U	19 U	20 U
4-Methylphenol	μg/kg dw	670	670			56	51	33	55	33	170	99
Benzoic acid	μg/kg dw	650	650			200 U	200 U	200 U	200 U	200 U	190 U	200 U
Benzyl alcohol	μg/kg dw	57	73			20 U	20 U	20 U	20 U	20 U	19 U	20 UJ
Hexachlorobenzene	mg/kg OC	0.38	2.3			0.11 U	0.11 U	0.14 U	0.18 U	0.21 U	0.98 U	0.075 U
Hexachlorobutadiene	mg/kg OC	3.9	6.2			0.11 U	0.11 U	0.14 U	0.18 U	0.21 U	0.98 U	0.075 U
Hexachloroethane	μg/kg dw			1,400	14,000	20 U	20 U	20 U	20 U	20 U	19 U	20 U
N-Nitrosodiphenylamine	mg/kg OC	11	11			1.5 U	2.3 U	2.9 U	1.3 U	1.5 U	1.4 U	1.5 U
Pentachlorophenol	μg/kg dw	360	690			98 U	99 U	97 U	100 U	98 U	97 U	97 U
Phenol	μg/kg dw	420	1200			630	330	44	450	220	400	520
PCBs												
Total PCBs (calc'd)	mg/kg OC	12	65			32	4.5	2.8 U	<u>170</u>	16	12 J	16

Table A-3a, cont.

						EW-RM-1	EW-RM-2	EW-RM-3	EW-RM-4	EW-RM-5	EW-RM-6	EW-RM-7
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-1	EW-RM06-2	EW-RM06-3	EW-RM06-4	EW-RM06-5	EW-RM06-6	EW-RM06-7
Pesticides									-			
Total DDTs (calc'd)	μg/kg dw			6.9	69	29 U	2.0 U	1.9 U	24 U	38 U	27 U	17 U
Aldrin	μg/kg dw			10	nv	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U
Dieldrin	μg/kg dw			10	nv	7.7 U	2.0 U	1.9 U	5.6 U	9.8 U	27 U	5.6 U
gamma-BHC	μg/kg dw			10	nv	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U
Heptachlor	μg/kg dw			10	nv	1.5 U	0.98 U	0.95 U	2.8 U	2.7 U	13 U	0.97 U
Total Chlordane (calc'd)	μg/kg dw			10	nv	6.3 U	2.0 U	1.9 U	5.6 U	5.3 U	27 U	3.9 U

dw - dry weight

nv - no value; there is neither a CSL nor an ML for this chemical

OC - organic carbon

SQS and CSL - sediment quality standard and cleanup screening level (WAC 173-204)

SL and ML - screening level and maximum level (USACE 2000)

Concentration in **bold** indicates SQS/SL exceedance.

Concentration in **bold underline** indicates CSL/ML exceedance

Table A-3b. Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-8 through EW-RM06-19

						EW-RM-8	EW-RM-10	EW-RM-15	EW-RM-16		EW-RM-18	EW-RM-19
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-8	EW-RM06-10	EW-RM06-15	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19
Metals and trace elements												
Antimony	mg/kg dw			150	200	6 UJ	7 UJ	8 UJ	7 UJ	7 UJ	5 UJ	7 UJ
Arsenic	mg/kg dw	57	93			6 U	8	11	8	7	5 U	7
Cadmium	mg/kg dw	5.1	6.7			0.2 U	0.3	2.4	0.4	0.4	0.2 U	0.5
Chromium	mg/kg dw	260	270			17.7	22.7	43.9	23.5	22.0	18.1	22.4
Copper	mg/kg dw	390	390			17.3	42.4	78.4	33.2	39.2	14.9	35.3
Lead	mg/kg dw	450	530			6	23	131	26	25	3	34
Mercury	mg/kg dw	0.41	0.59			0.05 U	0.67	0.78	0.16	0.15	0.04 U	0.38
Nickel	mg/kg dw			140	370	19	21	26	21	19	17	20
Silver	mg/kg dw	6.1	6.1			0.4 U	0.4 U	2.2	0.4 U	0.4 U	0.3 U	0.4 U
Zinc	mg/kg dw	410	960			36.3	66.4	249	70.3	74.8	29.9	74.8
PAHs												
2-Methylnaphthalene	mg/kg OC	38	64			2.3 U	2.2 J	13	1.4 U	1.2 U	3.5 U	1.2 J
Acenaphthene	mg/kg OC	16	57			2.3 U	2.1 J	4.2	2.2	1.6	3.5 U	1.1 J
Acenaphthylene	mg/kg OC	66	66			2.3 U	2.3	1.9	1.6	0.88 J	3.5 U	1.1 J
Anthracene	mg/kg OC	220	1200			2.3 U	9.8	10	6.3	3.9	3.5 U	5.6
Benzo(a)anthracene	mg/kg OC	110	270			1.9 J	17	16	9.7	5.9	3.5 U	8.1
Benzo(a)pyrene	mg/kg OC	99	210			1.8 J	21	14	12	7.1	3.5 U	8.8
Benzo(g,h,i)perylene	mg/kg OC	31	78			2.3 U	5.5	4.8	3.1	2.0	3.5 U	2.7
Total Benzofluoranthenes (calc'd)	mg/kg OC	230	450			5.2 J	55	36	28	18	3.5 U	24
Chrysene	mg/kg OC	110	460			2.7	26	23	15	9.4	3.5 U	12
Dibenzo(a,h)anthracene	mg/kg OC	12	33			2.3 U	2.2 J	1.3 J	1.2 J	0.76 J	3.5 U	0.69 J
Dibenzofuran	mg/kg OC	15	58			2.3 U	1.9 J	3.5	1.7	1.1 J	3.5 U	1.3 U
Fluoranthene	mg/kg OC	160	1200			3.8	35	40	26	18	3.5 U	21
Fluorene	mg/kg OC	23	79			2.3 U	2.9	7.8	2.1	1.4	3.5 U	1.8
Indeno(1,2,3-cd)pyrene	mg/kg OC	34	88			2.3 U	5.6	3.7	3.4	2.1	3.5 U	2.6

Table A-3b, cont.

						EW-RM-8	EW-RM-10	EW-RM-15	EW-RM-16		EW-RM-18	EW-RM-19
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-8	EW-RM06-10	EW-RM06-15	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19
Naphthalene	mg/kg OC	99	170			2.3 U	3.4	5.2	2.4	1.5	3.5 U	1.8
Phenanthrene	mg/kg OC	100	480			1.7 J	14	17	9.0	5.4	3.5 U	8.1
Pyrene	mg/kg OC	1000	1400			3.9	35	52	15	11	3.5 U	21
Total HPAH (calc'd)	mg/kg OC	960	5300			19 J	200 J	190 J	110 J	74 J	3.5 U	100 J
Total LPAH (calc'd)	mg/kg OC	370	780			1.7 J	34 J	46	24	15 J	3.5 U	19 J
Phthalates												
Bis(2-ethylhexyl)phthalate	mg/kg OC	47	78			8.4	30	<u>120</u>	16	12	3.5 U	14
Butyl benzyl phthalate	mg/kg OC	4.9	64			2.3 U	2.9	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
Diethyl phthalate	mg/kg OC	61	110			2.3 U	2.3 U	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
Dimethyl phthalate	mg/kg OC	53	53			2.3 U	2.3 U	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
Di-n-butyl phthalate	mg/kg OC	220	1700			2.3 U	2.3 U	5.2	1.4 U	1.2 U	3.5 U	1.3 U
Di-n-octyl phthalate	mg/kg OC	58	4500			2.3 U	2.3 U	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
Other SVOCs												
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8			<u>2.3 U</u>	<u>2.3 U</u>	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
1,2-Dichlorobenzene	mg/kg OC	2.3	2.3			2.3 U	2.3 U	1.7 U	1.4 U	1.2 U	<u>3.5 U</u>	1.3 U
1,3-Dichlorobenzene	μg/kg dw			170	nv	20 U	28	20 J	20 U	20 U	20 U	20 U
1,4-Dichlorobenzene	mg/kg OC	3.1	9			2.3 U	3.2	7.4	1.0 J	1.4	3.5 U	0.81 J
2,4-Dimethylphenol	μg/kg dw	29	29			20 U	20 U	<u>39 U</u>	20 U	20 U	20 U	20 U
2-Methylphenol	μg/kg dw	63	63			20 U	20 U	39 U	20 U	20 U	20 U	20 U
4-Methylphenol	μg/kg dw	670	670			20 U	100	100	120	80	20 U	200
Benzoic acid	μg/kg dw	650	650			200 U	200 U	390 U	200 U	200 U	200 U	200 U
Benzyl alcohol	μg/kg dw	57	73			20 UJ	20 UJ	39 UJ	20 U	20 U	20 UJ	20 UJ
Hexachlorobenzene	mg/kg OC	0.38	2.3			0.11 U	0.16 U	0.74 U	0.097 U	0.16 U	0.17 U	0.061 U
Hexachlorobutadiene	mg/kg OC	3.9	6.2			0.11 U	0.16 U	0.74 U	0.097 U	0.16 U	0.17 U	0.061 U
Hexachloroethane	μg/kg dw			1,400	14,000	20 U	20 U	39 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	mg/kg OC	11	11			2.3 U	2.3 U	1.7 U	1.4 U	1.2 U	3.5 U	1.3 U
Pentachlorophenol	μg/kg dw	360	690			100 U	98 U	200 U	100 U	98 U	100 U	98 U
Phenol	μg/kg dw	420	1200			20 U	470	340	560	390	20 U	480
PCBs												
Total PCBs (calc'd)	mg/kg OC	12	65			2.3 J	23	<u>100</u>	16	19	3.5 U	30

Table A-3b, cont.

						EW-RM-8	EW-RM-10	EW-RM-15	EW-RM-16		EW-RM-18	EW-RM-19
ANALYTE	UNIT	sqs	CSL	SL	ML	EW-RM06-8	EW-RM06-10	EW-RM06-15	EW-RM06-16	EW-RM06-101	EW-RM06-18	EW-RM06-19
Pesticides								-				
Total DDTs (calc'd)	μg/kg dw			6.9	69	2.0 U	20 U	<u>270 U</u>	21 U	38 U	2.0 U	18 U
Aldrin	μg/kg dw			10	nv	1.0 U	1.4 U	17 U	1.4 U	2.7 U	0.99 U	0.97 U
Dieldrin	μg/kg dw			10	nv	2.0 U	5.5 U	110 U	6.5 U	11 U	2.0 U	5.2 U
gamma-BHC	μg/kg dw			10	nv	1.0 U	1.4 U	17 U	1.4 U	2.7 U	0.99 U	0.97 U
Heptachlor	μg/kg dw			10	nv	1.0 U	1.4 U	17 U	1.4 U	2.7 U	0.99 U	0.97 U
Total Chlordane (calc'd)	μg/kg dw			10	nv	2.0 U	4.4 U	34 U	4.3 U	6.4 U	2.0 U	4.4 U

dw - dry weight

nv - no value; there is neither a CSL nor an ML for this chemical

OC - organic carbon

SQS and CSL - sediment quality standard and cleanup screening level (WAC 173-204)

SL and ML - screening level and maximum level (USACE 2000)

Concentration in **bold** indicates SQS/SL exceedance.

Concentration in **bold underline** indicates CSL/ML exceedance

Table A-3c. Concentrations of analytes in Recontamination Monitoring sediment samples compared to SQS/SL and CSL/ML: EW-RM06-21 through EW-RM06-28

	ı					EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
A NALYTE	UNIT	SQS	CSL	SL	ML	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Metals and trace elements											
Antimony	mg/kg dw			150	200	7 UJ	7 UJ	7 UJ	8 UJ	6 UJ	6 UJ
Arsenic	mg/kg dw	57	93			8	8	7	11	6 U	6
Cadmium	mg/kg dw	5.1	6.7			0.4	0.3 U	0.6	0.7	0.2 U	0.2 U
Chromium	mg/kg dw	260	270			21.1	23.6	20.7	30.1	19.9	20.6
Copper	mg/kg dw	390	390			35.0	30.3	30.2	49.1	19.1	22.5
Lead	mg/kg dw	450	530			22	16	27	39	8	11
Mercury	mg/kg dw	0.41	0.59			0.17	0.21	0.28	0.33	0.05 U	0.08
Nickel	mg/kg dw			140	370	18	25	17	22	22	20
Silver	mg/kg dw	6.1	6.1			0.4 U	0.4 U	0.4 U	0.5	0.3 U	0.4 U
Zinc	mg/kg dw	410	960			66.6	54.3	70.1	95	38.4	41.9
PAHs											
2-Methylnaphthalene	mg/kg OC	38	64			1.1 U	1.5 U	2.3	2.2	4.0 U	1.7 U
Acenaphthene	mg/kg OC	16	57			0.78 J	1.5 U	1.9	2.2	4.0 U	1.7 U
Acenaphthylene	mg/kg OC	66	66			1.0 J	1.5 U	1.5	2.3	4.0 U	1.7 U
Anthracene	mg/kg OC	220	1200			4.5	2.7	5.5	8.2	4.0 U	2.6
Benzo(a)anthracene	mg/kg OC	110	270			8.4	4.1	9.0	13	2.6 J	3.6
Benzo(a)pyrene	mg/kg OC	99	210			9.6	3.9	9.0	14	3.0 J	4.2
Benzo(g,h,i)perylene	mg/kg OC	31	78			2.2	1.3 J	2.9	4.9	4.0 U	1.4 J
Total Benzofluoranthenes (calc'd)	mg/kg OC	230	450			24	9.2	24	40	7.4 J	11
Chrysene	mg/kg OC	110	460			13	6.0	12	19	3.4 J	5.8
Dibenzo(a,h)anthracene	mg/kg OC	12	33			0.72 J	1.5 U	0.90 J	1.6	4.0 U	1.7 U
Dibenzofuran	mg/kg OC	15	58			1.1 U	1.5 U	1.6	1.9	4.0 U	1.7 U
Fluoranthene	mg/kg OC	160	1200			17	9.0	26	38	6.4	8.1
Fluorene	mg/kg OC	23	79			1.4	1.2 J	2.5	3.6	4.0 U	1.7 U
Indeno(1,2,3-cd)pyrene	mg/kg OC	34	88			2.3	1.3 J	2.8	4.6	4.0 U	1.5 J

Table A-3c, cont.

						EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
A NALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Naphthalene	mg/kg OC	99	170			1.3	1.1 J	2.1	3.0	4.0 U	1.7 U
Phenanthrene	mg/kg OC	100	480			6.6	4.2	10	14	2.4 J	3.2
Pyrene	mg/kg OC	1000	1400			15	12	23	40	7.8	7.2
Total HPAH (calc'd)	mg/kg OC	960	5300			93 J	47 J	110 J	180	31 J	43 J
Total LPAH (calc'd)	mg/kg OC	370	780			16 J	9.2 J	24	34	2.4 J	5.8
Phthalates											
Bis(2-ethylhexyl)phthalate	mg/kg OC	47	78			16	2.5	26	20	13	6.6
Butyl benzyl phthalate	mg/kg OC	4.9	64			1.1 U	1.5 U	1.4 U	1.5 U	4.0 U	1.7 U
Diethyl phthalate	mg/kg OC	61	110			1.1 U	1.5 U	1.4 U	1.5 U	4.0 U	1.7 U
Dimethyl phthalate	mg/kg OC	53	53			1.1 U	1.5 U	1.4 U	1.5 U	4.0 U	1.7 U
Di-n-butyl phthalate	mg/kg OC	220	1700			1.1 U	1.5 U	0.97 J	1.5 U	4.0 U	1.7 U
Di-n-octyl phthalate	mg/kg OC	58	4500			1.1 U	1.5 U	1.4 U	1.5 U	4.0 U	1.7 U
Other SVOCs											
1,2,4-Trichlorobenzene	mg/kg OC	0.81	1.8			1.1 U	1.5 U	1.4 U	1.5 U	<u>4.0 U</u>	1.7 U
1,2-Dichlorobenzene	mg/kg OC	2.3	2.3			1.1 U	1.5 U	1.4 U	1.5 U	<u>4.0 U</u>	1.7 U
1,3-Dichlorobenzene	μg/kg dw			170	nv	19 U	20 U	20 U	20 U	20 U	20 U
1,4-Dichlorobenzene	mg/kg OC	3.1	9			1.0 J	1.5 U	1.0 J	1.7	4.0 U	1.7 U
2,4-Dimethylphenol	μg/kg dw	29	29			19 U	20 U	20 U	20 U	20 U	20 U
2-Methylphenol	μg/kg dw	63	63			19 U	20 U	20 U	20 U	20 U	20 U
4-Methylphenol	μg/kg dw	670	670			120	16 J	24	57	20 U	61
Benzoic acid	μg/kg dw	650	650			190 U	200 U	200 U	200 U	200 U	200 U
Benzyl alcohol	μg/kg dw	57	73			19 UJ	20 UJ	20 U	20 U	20 UJ	20 UJ
Hexachlorobenzene	mg/kg OC	0.38	2.3			0.28 U	0.074 U	1.0 U	0.25 U	0.20 U	0.084 U
Hexachlorobutadiene	mg/kg OC	3.9	6.2			0.28 U	0.074 U	1.0 U	0.25 U	0.20 U	0.084 U
Hexachloroethane	μg/kg dw			1,400	14,000	19 U	20 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine	mg/kg OC	11	11			1.1 U	1.5 U	1.4 U	1.5 U	4.0 U	1.7 U
Pentachlorophenol	μg/kg dw	360	690			97 U	100 U	99 U	99 U	98 U	98 U
Phenol	μg/kg dw	420	1200			330	36	310	590	20 U	290
PCBs											
Total PCBs (calc'd)	mg/kg OC	12	65			12 J	7.1	14 J	34	40	6.8

Table A-3c, cont.

	·					EW-RM-21	EW-RM-23	EW-RM-24	EW-RM-25	EW-RM-26	EW-RM-28
A NALYTE	UNIT	sqs	CSL	SL	ML	EW-RM06-21	EW-RM06-23	EW-RM06-24	EW-RM06-25	EW-RM06-26	EW-RM06-28
Pesticides											
Total DDTs (calc'd)	μg/kg dw			6.9	69	15 U	7.0 U	29 U	42 U	2.0 U	11 U
Aldrin	μg/kg dw			10	nv	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Dieldrin	μg/kg dw			10	nv	9.1 U	2.0 U	29 U	11 U	2.0 U	2.0 U
gamma-BHC	μg/kg dw			10	nv	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Heptachlor	μg/kg dw			10	nv	4.6 U	0.99 U	15 U	3.4 U	0.98 U	0.98 U
Total Chlordane (calc'd)	μg/kg dw			10	nv	9.1 U	2.0 U	29 U	8.8 U	2.0 U	2.0 U

dw - dry weight

nv - no value; there is neither a CSL nor an ML for this chemical

OC - organic carbon

SQS and CSL - sediment quality standard and cleanup screening level (WAC 173-204)

SL and ML - screening level and maximum level (USACE 2000)

Concentration in **bold** indicates SQS/SL exceedance.

Concentration in **bold underline** indicates CSL/ML exceedance

Table A-4. AET substitution

		AET	Substitu	tion		EW-RM-20
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-20
Metals and trace elements						
Antimony	mg/kg dw			150	200	5 UJ
Arsenic	mg/kg dw	57	93			6
Cadmium	mg/kg dw	5.1	6.7			0.2 U
Chromium	mg/kg dw	260	270			15.7
Copper	mg/kg dw	390	390			17.2
Lead	mg/kg dw	450	530			5
Mercury	mg/kg dw	0.41	0.59			0.05 U
Nickel	mg/kg dw			140	370	18
Silver	mg/kg dw	6.1	6.1			0.3 U
Zinc	mg/kg dw	410	960			33.4
PAHs						
2-Methylnaphthalene	μg/kg dw	670				20 U
Acenaphthene	μg/kg dw	500				20 U
Acenaphthylene	μg/kg dw	560				20 U
Anthracene	μg/kg dw	960				20 U
Benzo(a)anthracene	μg/kg dw	1300	1600			20 U
Benzo(a)pyrene	μg/kg dw	1600				20 U
Benzo(g,h,i)perylene	μg/kg dw	670	720			20 U
Total Benzofluoranthenes (calc'd)	μg/kg dw	3200	3600			22 J
Chrysene	μg/kg dw	1400	2800			11 J
Dibenzo(a,h)anthracene	μg/kg dw	230				20 U
Dibenzofuran	μg/kg dw	540				20 U
Fluoranthene	μg/kg dw	1700	2500			27
Fluorene	μg/kg dw	540				20 U
Indeno(1,2,3-cd)pyrene	μg/kg dw	600	690			20 U
Naphthalene	μg/kg dw	2100				20 U
Phenanthrene	μg/kg dw	1500	2100			19 J
Pyrene	μg/kg dw	2600	3300			24
Total HPAH (calc'd)	μg/kg dw	12000	17000			84 J
Total LPAH (calc'd)	μg/kg dw	5200				19 J
Phthalates						
Bis(2-ethylhexyl)phthalate	μg/kg dw	1300	1900			23
Butyl benzyl phthalate	μg/kg dw	63	470			20 U

Table A-4, cont.

		AET Substitution UNIT SQS CSL SL ML						
ANALYTE	Unit	sqs	CSL	SL	ML	EW-RM06-20		
Diethyl phthalate	μg/kg dw	48	73			20 U		
Dimethyl phthalate	μg/kg dw	71	160			20 U		
Di-n-butyl phthalate	μg/kg dw	1400				20 U		
Di-n-octyl phthalate	μg/kg dw	420	2100			20 U		
Other SVOCs								
1,2,4-Trichlorobenzene	μg/kg dw	31	51			20 U		
1,2-Dichlorobenzene	μg/kg dw	35	50			20 U		
1,3-Dichlorobenzene	μg/kg dw		nv	170	nv	20 U		
1,4-Dichlorobenzene	μg/kg dw	110	nv			20 U		
2,4-Dimethylphenol	μg/kg dw	29	29			20 U		
2-Methylphenol	μg/kg dw	63	63			20 U		
4-Methylphenol	μg/kg dw	670	670			20 U		
Benzoic acid	μg/kg dw	650	650			200 U		
Benzyl alcohol	μg/kg dw	57	73			20 UJ		
Hexachlorobenzene	μg/kg dw	22	70			0.96 U		
Hexachlorobutadiene	μg/kg dw	11	120			0.96 U		
Hexachloroethane	μg/kg dw			1,400	14,000	20 U		
N-Nitrosodiphenylamine	μg/kg dw	28	40			20 U		
Pentachlorophenol	μg/kg dw	360	690			98 U		
Phenol	μg/kg dw	420	1200			20 U		
PCBs								
Total PCBs (calc'd)	μg/kg dw	130	1000			45 J		
Pesticides								
Total DDTs (calc'd)	μg/kg dw			6.9	69	1.9 U		
Aldrin	μg/kg dw		nv	10	nv	0.96 U		
Dieldrin	μg/kg dw		nv	10	nv	1.9 U		
gamma-BHC	μg/kg dw		nv	10	nv	0.96 U		
Heptachlor	μg/kg dw		nv	10	nv	0.96 U		
Total Chlordane (calc'd)	μg/kg dw		nv	10	nv	1.9 U		

dw - dry weight

nv - no value; there is neither a CSL nor an ML for this chemical

OC - organic carbon

SQS and CSL - sediment quality standard and cleanup screening level (WAC 173-204)

SL and ML - screening level and maximum level (USACE 2000)

APPENDIX B: DATA MANAGEMENT

B.1 LABORATORY REPLICATES

Chemical concentrations obtained from the analysis of laboratory duplicates or replicates (two or more analyses on the same sample) were averaged for a closer representation of the "true" concentration compared to the results of a single analysis. Averaging rules were dependent on whether the individual results were "detects" or "non-detects." If all concentrations were detects for a given parameter, the values were simply averaged arithmetically. If all concentrations were undetected for a given parameter, the minimum detection limit was reported. If the concentrations are a mixture of detects and non-detects, any two or more detected concentrations were averaged arithmetically and any detection limits were ignored. If there was a single detected concentration and one or more non-detects, the detected concentration was reported and the detection limit(s) ignored. The latter two rules were applied regardless of whether the detection limit was higher or lower than the detected concentration.

B.2 SIGNIFICANT FIGURES AND ROUNDING

The laboratory reported results with various numbers of significant figures depending on the instrument, parameter, and the concentration relative to the reporting limit. The reported (or assessed) precision of each observation is explicitly stored in the project database by recording the number of significant figures assigned by the laboratory. Tracking of significant figures becomes important when calculating averages and performing other data summaries.

When a calculation involves addition, such as totaling PCBs or PAHs, the calculation can only be as precise as the least precise number that went into the calculation. Example (assuming 2 significant figures):

210 + 19=229, but this would be reported as 230 because the trailing zero in the number 210 is not significant.

When a calculation involves multiplication or division, such as when carbon normalizing, all significant figures are carried through the calculation and then the total result is rounded at the end of the calculation to reflect the value used in the calculation with the fewest significant figures. Example:

 $59.9 \times 1.2 = 71.88$, to be reported as 72 because there are 2 significant figures in the number 1.2

When rounding, if the number following the last significant figure is less than 5, the digit is left unchanged. If the number following the last significant figure is equal to or greater than 5, the digit is increased by 1.


B.3 CALCULATING TOTALS

Concentrations for several analyte sums were calculated as follows:

- ◆ Total PCBs were calculated, in accordance with the methods of the Washington State Sediment Management Standards (SMS), using only detected values for seven Aroclor mixtures¹. For individual samples in which none of the seven Aroclor mixtures were detected, total PCBs were given a value equal to the highest reporting limit of the seven Aroclors and assigned a "U" qualifier indicating the lack of detected concentrations.
- ◆ Total LPAHs, HPAHs, PAHs, and benzofluoranthenes were also calculated in accordance with the methods of the SMS. Total LPAHs are the sum of detected concentrations for naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and anthracene. Total HPAHs are the sum of detected concentrations for fluoranthene, pyrene, benzo(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene. Total benzofluoranthenes are the sum of the b (i.e., benzo(b)fluoranthene), j, and k isomers. Because the j isomer is rarely quantitated, this sum is typically calculated with only the b and k isomers. For samples in which all individual compounds within any of the three groups described above were undetected, the single highest reporting limit for that sample represents the sum.
- ◆ **Total DDTs** were calculated using only detected values for the six DDT isomers: 2,4′-DDD, 4,4′-DDD, 2,4′-DDE, 4,4′-DDE, 4,4′-DDT, and 4,4′-DDT. For individual samples in which none of the isomers were detected, total DDTs were given a value equal to the highest reporting limit of the six isomers and assigned a "U" qualifier, indicating the lack of detected concentrations.
- ◆ Total chlordane was calculated using only detected values for the following compounds: alpha-chlordane, gamma-chlordane, oxychlordane, cisnonachlor, and trans-nonachlor. For individual samples in which none of these compounds was detected, total chlordane was given a value equal to the highest reporting limit of the five compounds listed above and assigned a "U"qualifier, indicating the lack of detected concentrations.

B.4 MULTIPLE RESULTS FOR THE SAME ANALYTE

The following rules have been used to select a value when multiple results have been reported for a single analyte for a single sample because the analyte is reported by more than one method (e.g., hexachlorobenzene):

- ◆ If all results are reported as detected without qualification as an estimated value (i.e., J qualifier), then the highest concentration is selected as a health-protective approach.
- If a mixture of J-qualified and unqualified detected results are reported, then the unqualified detected result is selected.
- ◆ If all results are reported as detected with J-qualification, the highest concentration is selected.
- ◆ If both non-detected and detected results are reported, then the detected result is selected. If there are multiple detected results and one or more non-detect results, then the highest detected concentration is selected.
- ◆ If all results are reported as non-detected, then the lowest reporting limit is selected.

APPENDIX C. DATA VALIDATION REPORTS

Environmental Science and Chemistry

TRANSMITTAL

DATE: March 28, 2006

PROJECT NO.: C22004-1

TO: Marina Mitchell

FROM: Chris Ransom

Windward Environmental LLC

EcoChem, Inc.

200 West Mercer Street, Suite 401

710 Second Ave, Suite 660

Seattle, WA 98119-3958

Seattle, WA 98104

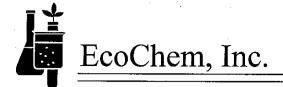
cransom@ecochem.net

(206)577-1290

VIA: U.S. Mail

WE ARE SENDING THE FOLLOWING MATERIALS:

Data Validation report for the Port of Seattle Duwamish East Waterway Recontamination Monitroring.


Sincerely

Chris Ransom

Project Manager EcoChem, Inc.

Copies: Project files

Chron

Environmental Science and Chemistry

DATA VALIDATION REPORT

Port of Seattle
Duwamish East Waterway
Recontamination Monitoring

Prepared for:

Windward Environmental, LLC 200 West Mercer Street, Suite 401 Seattle, Washington 98119

Prepared by:

EcoChem, Inc.
710 Second Avenue, Suite 660
Seattle, Washington 98104

EcoChem Project: C22004-1

March 27, 2006

Approved for Release:

Christing Ransom Project Manager

EcoChem, Inc.

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of the validation performed on sediment samples and associated field and laboratory quality control samples. A **SAMPLE INDEX** is provided, followed by the validation report.

Samples were analyzed by Analytical Resources, Inc. (ARI), Tukwila, Washington. The analytical methods and EcoChem project chemists are listed in the table below.

ANALYSIS METHODS AND ECOCHEM CHEMISTS

Analysis	Method	Primary Review	Secondary Review
PCB – Aroclors	SW 8082	Craig Hutchings	
Pesticides	SW 8081	Mark Brindle	John Mitchell
Semivolatile Organic Compounds	SW 8270C	Melissa Swanson	
Metals	SW 6010B		
Total Organic Carbon	Plumb 1981	Wayne Francis	Christine Ransom
Grain Size	PSEP	wayne Fidileis	CHIISHIE KAHSUH
Total Solids	E160.3		

The data were reviewed using guidance and quality control criteria documented in the analytical methods; the project quality assurance project plan (QAPP) *Port of Seattle, East Waterway Phase I Removal Action: Recontamination Action Plan (October 4, 2005)*; and *National Functional Guidelines for Inorganic (USEPA 1994 & 2002) and Organic Data Review* (USEPA 1999).

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. **APPENDIX B** contains the Qualified Data Summary Table. Data validation worksheets will be kept on file at EcoChem.

Sample Index Port of Seattle Duwamish East Waterway Recontamination Monitoring

Sample ID	Laboratory ID	SVOC	Metals	TOC	Total Solids	Grain Size	PCB	Pesticides
EW-RM06-01	06-1115-IZ26A	✓	✓	✓	✓	✓	✓	✓
EW-RM06-02	06-1116-IZ26B	✓	✓	✓	✓	✓	✓	✓
EW-RM06-16	06-1117-IZ26C	✓	✓	✓	✓	✓	✓	✓
EW-RM06-101	06-1118-IZ26D	✓	√	✓	✓	✓	✓	✓
EW-RM06-101DL	06-1118-IZ26DDL	✓						
EW-RM06-24	06-1119-IZ26E	✓	✓	✓	✓	✓	√	✓
EW-RM06-25	06-1120-IZ26F	✓	✓	✓	✓	✓	√	✓
EW-RM06-15	06-1121-IZ26G	✓	√	✓	✓	✓	✓	✓
EW-RM06-28	06-1122-IZ26H	✓	✓	✓	✓	✓	✓	✓
EW-RM06-26	06-1123-IZ26I	✓	✓	✓	✓	✓	✓	✓
EW-RM06-23	06-1124-IZ26J	✓	✓	✓	✓	✓	✓	✓
EW-RM06-20	06-1125-IZ26K	✓	✓	✓	✓	✓	✓	✓
EW-RM06-18	06-1126-IZ26L	✓	✓	✓	✓	✓	✓	✓
EW-RM06-3-RB	06-1127-IZ26M	✓	✓				✓	✓
EW-RM06-3	06-1128-IZ26N	✓	✓	✓	✓	✓	✓	✓
EW-RM06-4	06-1129-IZ26O	✓	✓	✓	✓	✓	✓	✓
EW-RM06-5	06-1130-IZ26P	✓	✓	✓	✓	✓	✓	✓
EW-RM06-6	06-1131-IZ26Q	✓	✓	✓	✓	✓	✓	✓
EW-RM06-7	06-1132-IZ26R	✓	✓	✓	✓	✓	✓	✓
EW-RM06-8	06-1133-IZ26S	✓	✓	✓	✓	✓	✓	✓
EW-RM06-10	06-1134-IZ26T	✓	✓	✓	✓	✓	✓	✓
EW-RM06-19	06-1135-IZ26U	✓	✓	✓	✓	✓	✓	✓
EW-RM06-21	06-1136-IZ26V	✓	✓	✓	✓	✓	✓	✓

DATA VALIDATION REPORT

Port of Seattle

Duwamish East Waterway Recontamination Monitoring Semivolatile Organic Compounds SW846 Method 8270D

SDG: IZ26

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc. (ARI), Seattle, Washington. Full validation (Level IV) was performed on all samples. Refer to the **Sample Index** for a list of samples reviewed.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables, with the exceptions noted below. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Ten percent of the results were verified. No errors were found.

III. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

- Holding Times and Sample Preservation GC/MS Instrument Performance Check
- 1 Initial Calibration (ICAL)
- 2 Continuing Calibration (CCAL)
 - Laboratory Blanks
- 1 Field Blanks
 - Surrogate Compounds

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

- 1 Laboratory Control Samples (LCS)
- 1 Field Duplicates
- 2 Internal Standards Compound Identification
- Reporting Limits
 Target Analyte List
- 1 Calculation Verification

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Preservation

Two of the three sample coolers were received at the laboratory with temperatures outside the advisory control limits of 2° to 6°C, at -12 °C and -2 °C Since the samples were preserved by freezing at or below -20 °C, the outliers were judged to have no impact on the data and no action was taken.

All samples were extracted and analyzed within the QAPP specified holding times for frozen sediments.

Initial Calibration

A six-point initial calibration (ICAL) was performed. The percent relative standard deviations (%RSD) were within the control limit of $\pm 30\%$, with the exception noted below. All correlation coefficients (r) were greater than 0.995, and relative response factor (RRF) values were calculated correctly and were greater than the minimum of 0.05.

The RSD value for 2,4-dinitrophenol (41.6%) exceeded the control limit of 30% from the ICAL analyzed on 1/19/06. No positive results were reported; therefore no qualifiers were applied.

Continuing Calibration

Continuing calibrations (CCAL) were analyzed at the proper frequency. The percent differences (%D) were within the control limit of $\pm 25\%$ and RRF values were greater than the minimum of 0.05, with the exceptions below. The %D values were calculated correctly.

For outliers indicative of low response, results and reporting limits were estimated (J/UJ-5B) in all associated samples.

CCAL 1/30/06: 2,4-dinitrophenol (35.0%) with low response

CCAL 2/08/06: 2,4-dinitrophenol (35.0%), 3-nitroaniline (35.7%), and 4-nitroaniline (34.4%) with low response

CCAL 2/09/06: Benzyl alcohol (64.1%), 2,4-dinitrophenol (75.2%), and 4,6-dinitro-2-methylphenol (34.6%) with low response

CCAL 2/10/06: Benzyl alcohol (76.9%), 2,4-dinitrophenol (64.4%), and 4,6-dinitro-2-methylphenol (26.2%) with low response and benzo(g,h,i)perylene (-33.2%) and indeno(1,2,3-c,d)pyrene (-28.8%) with high response. This CCAL was associated with only QC samples, so no qualifiers were applied.

Field Blanks

An equipment rinse blank was submitted with this SDG. No positive results were reported in EW-RM06-3-RB.

Laboratory Control Sample Analyses

A laboratory control sample (LCS) was analyzed at the proper frequency of one per extraction batch. All %R values met laboratory and QAPP acceptance criteria.

The relative percent difference (RPD) value for 3,3'-dichlorobenzidine was outside control limits for the LCS/LCSD analyzed with this SDG. No positive values were reported in the samples; reporting limits were judged to be unaffected. No qualifiers were required.

Field Duplicates

Samples EW-RM06-16 and EW-RM06-101 were submitted as field duplicates. All relative percent difference (RPD) values were less than the control limit of 50% or the absolute difference was less than twice the reporting limit. Field precision was acceptable.

Internal Standards

An evaluation of areas and retention times for internal standards (IS) was performed as required. All retention times were within ± 30 seconds of the associated CCAL internal standard retention time. The internal standard areas were within the specified acceptance limits of 50% to 200% of the associated CCAL internal standard area, with the following exception:

The %R value for the internal standard chrysene-d12 was 200% of the CCAL standard in Sample EW-RM06-101. This internal standard is used for quantitation of 3,3'-dichlorobenzidine, chrysene, and bis(2-ethylhexyl) phthalate only. This sample was re-analyzed at dilution, bringing all internal standards within control limits. No positive results for 3,3'-dichlorobenzidine were detected for either analysis, and no qualifier was required due to increased response. Positive results for chrysene and bis(2-ethylhexyl) phthalate were reported from the re-analysis. All other analytes were reported from the original analysis. The chrysene and bis(2-ethylhexyl) phthalate results from the original analysis were rejected (R-11) and the result for the remaining analytes were rejected (R-11) in the dilution to denote that more appropriate results were reported. A usable result remains for every analyte for this sample.

Reporting Limits

The reporting limits in some samples exceeded the target reporting limits specified in the QAPP.

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT OF THE DATA

As was determined by this evaluation, the laboratory followed the specified analytical methods. Precision was acceptable, as demonstrated by the matrix spike/matrix spike duplicate (MS/MSD), LCS/LCSD, and field duplicate RPD values. Accuracy was also acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery results.

Data were rejected to indicate the most appropriate result from multiple reported results. A usable result remains for all analytes.

Data were qualified as estimated because of CCAL %D outliers.

Rejected data should not be used for any purpose. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT

Port of Seattle

Duwamish East Waterway Recontamination Monitoring Organochlorine Pesticides by SW846 Method 8081A **SDG: IZ26**

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc. (ARI), Tukwila, Washington. Full validation (Level IV) was performed on all samples. Refer to the **Sample Index** for a list of samples reviewed.

I. DATA PACKAGE COMPLETENESS

All required deliverables were submitted by the laboratory. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Ten percent of the results were verified. No errors were found.

III. **TECHNICAL DATA VALIDATION**

The quality control (QC) requirements that were reviewed are listed below.

1	Holding Times and Sample Preservation	Laboratory Control Samples (LCS)

Initial Calibration (ICAL) 1 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Internal Standards

Continuing Calibration (CCAL) Laboratory Blanks Compound Identification

1 Field Blanks 1 Reporting Limits (MDL and MRL)

Surrogate Compounds 1 Calculation Verification

1 Field Duplicates

Holding Times and Sample Preservation

Two of the three sample coolers were received at the laboratory with temperatures outside the advisory control limits of 2° to 6°C, at -12 °C and -2 °C Since the samples were preserved by freezing at or below -20 °C, the outliers were judged to have no impact on the data and no action was taken.

Quality control results are discussed below, but no data were qualified.

Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

All samples were extracted and analyzed within the QAPP specified holding time for frozen sediments.

Field Blanks

Sample EW-RM06-3-RB was submitted as a field rinsate blank. No positive results were detected.

Field Duplicates

Samples EW-RM06-16 and EW-RM06-101 were submitted as field duplicates. No positive results were reported in either sample. Field precision was acceptable.

Matrix Spike/Matrix Spike Duplicate Analyses

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed using Sample EW-RM06-24. The relative percent difference (RPD) value for 4,4'-DDT exceeded the control limit of 30%, at 38%. 4,4'-DDT was not detected in the parent sample, thus no qualification of the parent sample for precision was necessary.

Reporting Limits

Reporting limits and detected concentrations were adjusted for sample volume values. All compound reporting limits (RL) met the QAPP target RL.

Calculation Verification

Several compound quantitation (from QC samples) and reporting limit results were verified by recalculation. No transcription or calculation errors were found.

The chromatograms were reviewed for each sample. No false negatives or false positives were found. The reporting limits were adjusted for sample size and percent total solids.

IV. OVERALL ASSESSMENT OF THE DATA

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, MS/MSD, and LCS/LCSD recovery values. Precision was acceptable, as demonstrated by the field duplicate, LCS/LCSD, and MS/MSD RPD values, with the noted exception.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

DATA VALIDATION REPORT

Port of Seattle

Duwamish East Waterway Recontamination Monitoring PCB Aroclors by SW846 Method 8082

SDG: IZ26

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc. (ARI), Tukwila, Washington. Full validation (Level IV) was performed on all samples. Refer to the **Sample Index** for a list of samples reviewed.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Ten percent of the results were verified.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1 Holding Times and Sample Preservation

Initial Calibration (ICAL)

Continuing Calibration (CCAL)

Laboratory Blanks

1 Field Blanks

Surrogate Compounds

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Laboratory Control Samples (LCS)

Field Duplicates
 Internal Standards

1 Compound Identification

2 Reporting Limits (MDL and MRL)

1 Calculation Verification

Holding Times and Sample Preservation

Two of the three sample coolers were received at the laboratory with temperatures outside the advisory control limits of 2° to 6°C, at -12° and -2°. Since the samples were preserved by freezing at or below -20 °C, the outliers were judged to have no impact on the data and no action was taken.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

All samples were extracted and analyzed within the QAPP specified holding times for frozen sediments.

Field Blanks

Sample EW-RM06-3-RB was submitted as a field blank. No positive results were reported.

Field Duplicates

Samples EW-RM06-16 and EW-RM06-101 were submitted as field duplicates. The relative percent difference (RPD) value for Aroclor 1260 was greater than the control limit of 50%, at 55.6%. No data were qualified based on field duplicate precision outliers; however users of the data should consider the impact of field precision outliers on the reported results.

Compound Identification

All Aroclor identifications were reviewed and were found to be appropriate.

Reporting Limits (Method Detection Limit and Method Reporting Limit

Several samples were extracted with reduced sample sizes due to the high levels of Aroclors present in the samples. Reporting limits were elevated accordingly and no action was taken. Additionally, the laboratory elevated reporting limits for one or more Aroclors in most samples due to interferences.

The values for Aroclor 1260 exceeded the linear range of the calibration in Samples EW-RM06-04 and EW-RM06-19. These samples were diluted and re-analyzed; the laboratory reported the results for both analyses. The Aroclor values that exceeded the linear range were rejected (R-20). Results for all other Aroclors were rejected (R-11) in the dilution analyses. After qualification, one usable result remains for each Aroclor in every sample.

Calculation Verification

Several Aroclor results were verified by recalculation from the raw data. No calculation errors were found. One transcription error was noted, the Form 8 for the analytical sequence on the RTX-5 column used incorrect areas for the internal standard evaluation. The areas of the sample and CCAL internal standards were compared to the correct areas and all internal standard areas were acceptable. No further action was taken.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample, and matrix spike/matrix spike duplicate (MS/MSD) percent recovery values. Precision was acceptable as demonstrated by the RPD values for the MS/MSD and field duplicate analyses, with the exception noted above

Data were rejected in order to report the most appropriate result from multiple dilutions. A usable result remains for all analytes in all samples.

Data that have been rejected should not be used for any purpose. All other data, as reported, are acceptable for use.

DATA VALIDATION REPORT

Port of Seattle

Duwamish East Waterway Recontamination Monitoring Total Metals by 6010B and Mercury by 7471A

SDG: IZ26

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Full validation (Level IV) was performed on all samples. Refer to the **SAMPLE INDEX** for a list of the individual samples.

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Ten percent of the results were verified. No errors were found.

III. TECHNICAL DATA VALIDATION

The quality control (QC) requirements for review are listed below.

1 Holding Times and Sample Preservation

Initial Calibration (ICAL)

Calibration Verification (CVER)

CRDL Standard

Laboratory Blanks

Laboratory Control Samples

1 Field Blanks

2 Matrix Spike Samples

Laboratory Duplicates

ICP Interference Check Samples

Serial Dilutions

1 Field Duplicates

Reporting Limits (MDL and MRL)

1 Reported Results

1 Calculation Verification

Holding Times and Sample Preservation

Two of the three sample coolers were received at the laboratory with temperatures outside the advisory control limits of 2° to 6°C, at -12 °C and -2 °C Since the samples were preserved by freezing at or below -20 °C, the outliers were judged to have no impact on the data and no action was taken.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Field Blanks

One rinsate blank, EW-RM06-3-RB, was submitted with this SDG. After qualification for laboratory blank contamination, positive results remained for copper and zinc. To evaluate the effect on the samples, action levels of five times the blank concentrations were established. All copper and zinc results were greater than the action level; therefore no qualification of data was necessary.

Matrix Spike Samples

Matrix spikes (MS) were analyzed at the proper frequency of one per 20 samples or one per batch; whichever was more frequent. The percent recovery (%R) values were within the control limits of 75%-125%, with the exceptions noted below. Control limits do not apply when the sample concentration is greater than four times the spiking level. For %R values greater than the upper control limit, the associated positive results were estimated (J-8) to indicate a possible high bias. No action was taken for non-detects. For %R values less than the lower control limit, the associated positive results and non-detects were qualified as estimated (J/UJ-8) to indicate a possible low bias.

The recoveries for antimony for both sediment matrix spike samples were less than 30%. Antimony was not detected in any sample. The lab did not originally analyze post digestion spikes; the analysis of these samples was requested at a later date. All post digestion spike recoveries were within the control limits of 75%-125%; therefore the antimony results were estimated (UJ-8) as per NFG guidelines instead of being rejected.

Field Duplicates

The data for one set of field duplicates, EW-RM06-16 & EW-RM06-101, were submitted. The relative percent difference (RPD) values were less than the control limit of 50%. Field precision was acceptable.

Reported Results

The results for the method blanks in the EDDs did not match the hardcopy. Corrections were made to the EDD and no further action was taken.

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. The laboratory and field duplicate RPD values indicated acceptable precision. Accuracy was also acceptable, as demonstrated by the MS and LCS %R values, except as noted above.

Data were qualified as estimated based on matrix spike %R outliers.					
All data, as qualified, are acceptable for use.					

DATA VALIDATION REPORT

Port of Seattle

Duwamish East Waterway Recontamination Monitoring Conventionals Analyses

SDG: IZ26

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Full validation (Level IV) was performed on all samples. Refer to the **SAMPLE INDEX** for a list of the individual samples.

The analytical tests that were performed are summarized below:

Parameter	Method					
Total Solids	160.3					
Grain Size	PSEP 1986					
Total Organic Carbon (TOC)	Plumb, 1981 & EPA 415.1(water)					

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO HARDCOPY VERIFICATION

A verification of the electronic data deliverable (EDD) results was performed by comparison to the hardcopy laboratory data package. Ten percent of the results were verified. No errors were found.

III. TECHNICAL DATA VALIDATION

The quality control (QC) requirements for review are listed below.

Holding Times and Sample Preservation Laboratory Duplicates and Triplicates
 Initial Calibration (ICAL)
 ICP Interference Check Samples

Calibration Verification Serial Dilutions
CRDL Standard 1 Field Replicates

Laboratory Blanks Reporting Limits (MDL and MRL)

Laboratory Control Samples Reported Results
Matrix Spikes 1 Calculation Verification

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Holding Times and Sample Preservation

Two of the three sample coolers were received at the laboratory with temperatures outside the advisory control limits of 2° to 6°C, at -12 °C and -2 °C; the jars for grain size were kept refrigerated prior to delivery to the laboratory. The outliers were judged to have no impact on the data and no action was taken.

Field Duplicates

The data for one set of field duplicates, EW-RM06-16 & EW-RM06-101, were submitted. The relative percent difference (RPD) values were less than the control limit of 50%. Field precision was acceptable.

Calculation Verification

Several results were verified by recalculation. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. The laboratory triplicate percent relative standard deviation, laboratory duplicate RPD, and field duplicate RPD values indicated acceptable precision. Accuracy was also acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values.

No data were qualified for any reason. All data, as reported, are acceptable for use.

QUALIFIED DATA SUMMARY TABLE

Port of Seattle

Duwamish East Waterway Recontamination Monitoring

						Laboratory	Validation	Reason
Sample ID	Laboratory ID	Method	Analyte	Result	Unit	Qualifier	Qualifier	Code
EW-RM06-01	06-1115-IZ26A	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-01	06-1115-IZ26A	PSDDA SW8270	3-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-01	06-1115-IZ26A	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-01	06-1115-IZ26A	PSDDA SW8270	4-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-02	06-1116-IZ26B	SW6010B	Antimony	6	mg/kg	U	UJ	8
EW-RM06-02	06-1116-IZ26B	PSDDA SW8270	3-Nitroaniline	99	ug/kg	U	UJ	5B
EW-RM06-02	06-1116-IZ26B	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-02	06-1116-IZ26B	PSDDA SW8270	4-Nitroaniline	99	ug/kg	U	UJ	5B
EW-RM06-16	06-1117-IZ26C	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-16	06-1117-IZ26C	PSDDA SW8270	3-Nitroaniline	100	ug/kg	U	UJ	5B
EW-RM06-16	06-1117-IZ26C	PSDDA SW8270	4-Nitroaniline	100	ug/kg	U	UJ	5B
EW-RM06-16	06-1136-IZ26C	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-101	06-1118-IZ26D	PSDDA SW8270	bis(2-Ethylhexyl)phthalate	210	ug/kg		R	11
EW-RM06-101	06-1118-IZ26D	PSDDA SW8270	Chrysene	160	ug/kg		R	11
EW-RM06-101	06-1118-IZ26D	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-101	06-1118-IZ26D	PSDDA SW8270	3-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-101	06-1118-IZ26D	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-101	06-1118-IZ26D	PSDDA SW8270	4-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Phenol	420	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Bis-(2-Chloroethyl) Ether	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Chlorophenol	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	1,3-Dichlorobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	1,4-Dichlorobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzyl Alcohol	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	1,2-Dichlorobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Methylphenol	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,2'-Oxybis(1-Chloropropane)	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Methylphenol	89	ug/kg	J	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	N-Nitroso-Di-N-Propylamine	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Hexachloroethane	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Nitrobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Isophorone	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Nitrophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4-Dimethylphenol	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzoic Acid	980	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	bis(2-Chloroethoxy) Methane	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4-Dichlorophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	1,2,4-Trichlorobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Naphthalene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Chloroaniline	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Hexachlorobutadiene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Chloro-3-methylphenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Methylnaphthalene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Hexachlorocyclopentadiene	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4,6-Trichlorophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4,5-Trichlorophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Chloronaphthalene	98	ug/kg	U	R	11

QUALIFIED DATA SUMMARY TABLE

Port of Seattle

Duwamish East Waterway Recontamination Monitoring

						Laboratory	Validation	Reason
Sample ID	Laboratory ID	Method	Analyte	Result	Unit	Qualifier	Qualifier	Code
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2-Nitroaniline	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Dimethylphthalate	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Acenaphthylene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	3-Nitroaniline	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Acenaphthene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4-Dinitrophenol	980	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Nitrophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Dibenzofuran	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,6-Dinitrotoluene	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	2,4-Dinitrotoluene	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Diethylphthalate	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Chlorophenyl-phenylether	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Fluorene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Nitroaniline	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	980	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	N-Nitrosodiphenylamine	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	4-Bromophenyl-phenylether	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Hexachlorobenzene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Pentachlorophenol	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Phenanthrene	93	ug/kg	J	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Carbazole	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Anthracene	61	ug/kg	J	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Di-n-Butylphthalate	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Fluoranthene	250	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Pyrene	210	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Butylbenzylphthalate	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	3,3'-Dichlorobenzidine	490	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzo(a)anthracene	100	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Di-n-Octyl phthalate	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzo(b)fluoranthene	150	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzo(k)fluoranthene	100	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzo(a)pyrene	110	ug/kg		R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Indeno(1,2,3-cd)pyrene	61	ug/kg	J	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Dibenz(a,h)anthracene	98	ug/kg	U	R	11
EW-RM06-101DL	06-1118-IZ26DDL	PSDDA SW8270	Benzo(g,h,i)perylene	69	ug/kg	J	R	11
EW-RM06-24	06-1119-IZ26E	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-24	06-1119-IZ26E	PSDDA SW8270	3-Nitroaniline	99	ug/kg	U	UJ	5B
EW-RM06-24	06-1119-IZ26E	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-24LR	06-1119-IZ26E	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-24	06-1120-IZ26F	PSDDA SW8270	4-Nitroaniline	99	ug/kg	U	UJ	5B
EW-RM06-25	06-1120-IZ26F	SW6010B	Antimony	8	mg/kg	U	UJ	8
EW-RM06-25	06-1120-IZ26F	PSDDA SW8270	3-Nitroaniline	99	ug/kg	U	UJ	5B
EW-RM06-25	06-1120-IZ26F	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-15	06-1121-IZ26G	SW6010B	Antimony	8	mg/kg	U	UJ	8
EW-RM06-15	06-1121-IZ26G	PSDDA SW8270	Benzyl Alcohol	39	ug/kg	U	UJ	5B
EW-RM06-15	06-1121-IZ26G	PSDDA SW8270	2,4-Dinitrophenol	390	ug/kg	U	UJ	5B
EW-RM06-25	06-1121-IZ26G	PSDDA SW8270	4-Nitroaniline	99	ug/kg	U	UJ	5B

QUALIFIED DATA SUMMARY TABLE

Port of Seattle

Duwamish East Waterway Recontamination Monitoring

						Laboratory	Validation	Reason
Sample ID	Laboratory ID	Method	Analyte	Result	Unit	Qualifier	Qualifier	Code
EW-RM06-15	06-1122-IZ26H	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	390	ug/kg	U	UJ	5B
EW-RM06-28	06-1122-IZ26H	SW6010B	Antimony	6	mg/kg	U	UJ	8
EW-RM06-28	06-1122-IZ26H	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-28	06-1122-IZ26H	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-26	06-1123-IZ26I	SW6010B	Antimony	6	mg/kg	U	UJ	8
EW-RM06-26	06-1123-IZ26I	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-26	06-1123-IZ26I	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-28	06-1123-IZ26I	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-23	06-1124-IZ26J	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-23	06-1124-IZ26J	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-23	06-1124-IZ26J	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-26	06-1124-IZ26J	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-20	06-1125-IZ26K	SW6010B	Antimony	5	mg/kg	U	UJ	8
EW-RM06-20	06-1125-IZ26K	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-20	06-1125-IZ26K	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-23	06-1125-IZ26K	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-18	06-1126-IZ26L	SW6010B	Antimony	5	mg/kg	U	UJ	8
EW-RM06-18	06-1126-IZ26L	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-18	06-1126-IZ26L	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-20	06-1126-IZ26L	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-18	06-1127-IZ26M	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-3	06-1128-IZ26N	SW6010B	Antimony	6	mg/kg	U	UJ	8
EW-RM06-3	06-1128-IZ26N	PSDDA SW8270	3-Nitroaniline	97	ug/kg	U	UJ	5B
EW-RM06-3	06-1128-IZ26N	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-3-RB	06-1128-IZ26N	SW8270D	2,4-Dinitrophenol	10	ug/L	U	UJ	5B
EW-RM06-3	06-1129-IZ26O	PSDDA SW8270	4-Nitroaniline	97	ug/kg	U	UJ	5B
EW-RM06-4	06-1129-IZ26O	PSDDA SW8082	Aroclor 1260	2100	ug/kg	E	R	20
EW-RM06-4	06-1129-IZ26O	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-4	06-1129-IZ26O	PSDDA SW8270	3-Nitroaniline	100	ug/kg	U	UJ	5B
EW-RM06-4	06-1129-IZ26O	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1016	560	ug/kg	U	R	11
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1242	560	ug/kg	U	R	11
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1248	560	ug/kg	U	R	11
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1254	890	ug/kg	Υ	R	11
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1221	560	ug/kg	U	R	11
EW-RM06-4	06-1129-IZ26ODL	PSDDA SW8082	Aroclor 1232	560	ug/kg	U	R	11
EW-RM06-4	06-1130-IZ26P	PSDDA SW8270	4-Nitroaniline	100	ug/kg	U	UJ	5B
EW-RM06-5	06-1130-IZ26P	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-5	06-1130-IZ26P	PSDDA SW8270	3-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-5	06-1130-IZ26P	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-5	06-1131-IZ26Q	PSDDA SW8270	4-Nitroaniline	98	ug/kg	U	UJ	5B
EW-RM06-6	06-1131-IZ26Q	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-6	06-1131-IZ26Q	PSDDA SW8270	3-Nitroaniline	97	ug/kg	U	UJ	5B
EW-RM06-6	06-1131-IZ26Q	PSDDA SW8270	2,4-Dinitrophenol	190	ug/kg	U	UJ	B5
EW-RM06-6	06-1132-IZ26R	PSDDA SW8270	4-Nitroaniline	97	ug/kg	U	UJ	5B
EW-RM06-7	06-1132-IZ26R	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-7	06-1132-IZ26R	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B

QUALIFIED DATA SUMMARY TABLE

Port of Seattle

Duwamish East Waterway Recontamination Monitoring

Sample ID	Laboratory ID	Method	Analyte	Result	Unit	Laboratory Qualifier	Validation Qualifier	Reason Code
EW-RM06-7	06-1132-IZ26R	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-7	06-1133-IZ26S	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-8	06-1133-IZ26S	SW6010B	Antimony	6	mg/kg	U	UJ	8
EW-RM06-8	06-1133-IZ26S	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-8	06-1133-IZ26S	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-10	06-1134-IZ26T	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-10	06-1134-IZ26T	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-10	06-1134-IZ26T	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-8	06-1134-IZ26T	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-10	06-1135-IZ26U	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-19	06-1135-IZ26U	PSDDA SW8082	Aroclor 1260	320	ug/kg	E	R	20
EW-RM06-19	06-1135-IZ26U	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-19	06-1135-IZ26U	PSDDA SW8270	Benzyl Alcohol	20	ug/kg	U	UJ	5B
EW-RM06-19	06-1135-IZ26U	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1016	96	ug/kg	U	R	11
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1242	96	ug/kg	U	R	11
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1248	96	ug/kg	U	R	11
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1254	140	ug/kg	Υ	R	11
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1221	96	ug/kg	U	R	11
EW-RM06-19	06-1135-IZ26UDL	PSDDA SW8082	Aroclor 1232	96	ug/kg	U	R	11
EW-RM06-19	06-1136-IZ26V	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	200	ug/kg	U	UJ	5B
EW-RM06-21	06-1136-IZ26V	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-21	06-1136-IZ26V	PSDDA SW8270	Benzyl Alcohol	19	ug/kg	U	UJ	5B
EW-RM06-21	06-1136-IZ26V	PSDDA SW8270	4,6-Dinitro-2-Methylphenol	190	ug/kg	U	UJ	5B
EW-RM06-21LR	06-1136-IZ26V	SW6010B	Antimony	7	mg/kg	U	UJ	8
EW-RM06-21	06-1117-IZ26V	PSDDA SW8270	2,4-Dinitrophenol	190	ug/kg	U	UJ	5B
EW-RM06-16	06-1136-IZ26C	PSDDA SW8270	2,4-Dinitrophenol	200	ug/kg	U	UJ	5B

APPENDIX D. LABORATORY FORM 1s

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-01 SAMPLE

Lab Sample ID: IZ26A LIMS ID: 06-1115

Matrix: Sediment
Data Release Authorized

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 66.2%

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06

Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.5	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	22.0	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	38.7	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	27	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.17	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	14	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.9	68.7	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-02

SAMPLE

Lab Sample ID: IZ26B LIMS ID: 06-1116

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Percent Total Solids: 83.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	6	6	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	6	6	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	U
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.6	22.8	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	26.5	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2	10	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.04	0.06	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	25	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.3	0.3	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	48.7	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26N LIMS ID: 06-1128

LIMS ID: 06-1128 Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

Percent Total Solids: 83.8%

Sample ID: EW-RM06-3

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	6	6	IJ
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	6	6	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.6	24.1	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	17.1	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2	5	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.05	U
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	19	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.3	0.3	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	36.6	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-4

SAMPLE

Lab Sample ID: IZ260 LIMS ID: 06-1129

Matrix: Sediment

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Data Release Authorized: Reported: 02/06/06

Percent Total Solids: 69.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimonv	7	7	IJ
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.4	J
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	19.9	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	34.8	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	23	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.15	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	16	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	62.3	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-5

SAMPLE

Lab Sample ID: IZ26P LIMS ID: 06-1130

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Sediment Data Release Authorized; 05-08-09-29

Date Sampled: 01/24/06

Reported: 02/06/06

Date Received: 01/25/06

Percent Total Solids: 70.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	IJ
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	. 7	7	U
3050B	01/30/06	6010B	02/01/06	7440~43-9	Cadmium	0.3	0.3	U
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	20.7	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	33.2	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	17	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.13	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	18	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	52.7	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26Q LIMS ID: 06-1131

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Sample ID: EW-RM06-6 SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Percent Total Solids: 70.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	Ū
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	Ū
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.4	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	18.6	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	33.4	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	19	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.13	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	18	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	Ü
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	58.1	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-7 SAMPLE

Lab Sample ID: IZ26R LIMS ID: 06-1132

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Percent Total Solids: 67.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	Ü
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	Ü
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.3	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	21.1	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	33.8	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	22	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.07	0.12	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	16	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.9	60.0	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-8 SAMPLE

Lab Sample ID: IZ26S

LIMS ID: 06-1133 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Percent Total Solids: 81.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	6	6	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	6	6	Ü
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	IJ
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.6	17.7	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	17.3	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2	6	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.05	U
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	19	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	36.3	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26T LIMS ID: 06-1134

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 67.2%

Sample ID: EW-RM06-10

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	8	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.3	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	22.7	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	42.4	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	23	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.07	0.67	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	21	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	66.4	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26G

LIMS ID: 06-1121 Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

Sample ID: EW-RM06-15 SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Percent Total Solids: 57.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	8	8	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	8	11	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	2.4	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.8	43.9	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	78.4	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	131	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.78	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	2	26	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.5	2.2	
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	1	249	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26C

LIMS ID: 06-1117 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 72.5%

Sample ID: EW-RM06-16

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
					<u> </u>		9,2	
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	8	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.4	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	23.5	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	33.2	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	. 3	26	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.16	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	21	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	70.3	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-101

SAMPLE

Lab Sample ID: IZ26D LIMS ID: 06-1118

Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Percent Total Solids: 73.0%

Prep	Prep	Analysis	Analysis					
Meth	Date	Method	Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	Ü
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.4	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	22.0	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	39.2	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	25	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.15	
[.] 3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	19	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	74.8	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26L LIMS ID: 06-1126 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 91.5%

Sample ID: EW-RM06-18

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
					- Iniary ce	TCD	mg/kg-dry	
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	5	5	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	5	5	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	U
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.5	18.1	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	14.9	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2	3	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.04	0.04	IJ
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	17	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.3	0.3	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	29.9	Ü

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26U

LIMS ID: 06-1135 Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

Percent Total Solids: 70.3%

Sample ID: EW-RM06-19 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.5	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	22.4	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	35.3	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	34	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.38	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	20	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	74.8	

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-20

SAMPLE

Lab Sample ID: IZ26K LIMS ID: 06-1125

Matrix: Sediment
Data Release Authorized
Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Percent Total Solids: 86.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	5	5	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	5	6	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	U
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.5	15.7	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	17.2	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2.	5	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.05	U
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	18	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.3	0.3	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	33.4	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26V

LIMS ID: 06-1136 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 73.0%

Sample ID: EW-RM06-21 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	8	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.4	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	21.2	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	35.4	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	22	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.17	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	18	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	69.5	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26V

LIMS ID: 06-1136 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Sample ID: EW-RM06-21

DUPLICATE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
			_	_			
Antimony	6010B	7 U	7 U	0.0%	+/- 7	L	
Arsenic	6010B	8	8	0.0%	+/- 7	· L	
Cadmium	6010B	0.4	0.3	28.6%	+/- 0.3	L	
Chromium	6010B	21.2	21.0	0.9%	+/- 20%		
Copper	6010B	35.4	34.5	2.6%	+/- 20%		
Lead	6010B	22	21	4.7%	+/- 20%		
Mercury	7471A	0.17	0.17	0.0%	+/- 0.06	L	
Nickel	6010B	18	18	0.0%	+/- 20%		
Silver	6010B	0.4 U	0.4 U	0.0%	+/- 0.4	L	
Zinc	6010B	69.5	63.6	8.9%	+/- 20%		

Reported in mg/kg-dry

^{*-}Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-23

Project: East Waterway Recontam. Mon.

QC Report No: IZ26-Windward Environmental

SAMPLE

Lab Sample ID: IZ26J LIMS ID: 06-1124

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

05-08-09-29 Date Sampled: 01/12/06

Date Received: 01/25/06

Percent Total Solids: 73.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	7	7	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	8	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.3	Ū
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	23.6	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	30.3	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	16	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.21	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	25	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.8	54.3	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26E

LIMS ID: 06-1119 Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

Percent Total Solids: 66.5%

Sample ID: EW-RM06-24 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
01 /20 /06	C010D	02/01/06	7440 26 0	7) 1- 5	7		
01/30/06	0010B		7440-36-0	Antimony	/	1	U
01/30/06	6010B	02/01/06	7440-38-2	Arsenic	7	7	U
01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.6	
01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.7	21.0	
01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	29.3	
01/30/06	6010B	02/01/06	7439-92-1	Lead	3	25	
01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.07	0.26	
01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	17	
01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.9	71.0	
	01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06	Date Method 01/30/06 6010B 01/30/06 6010B	Date Method Date 01/30/06 6010B 02/01/06 01/30/06 6010B 02/01/06	Date Method Date CAS Number 01/30/06 6010B 02/01/06 7440-36-0 01/30/06 6010B 02/01/06 7440-38-2 01/30/06 6010B 02/01/06 7440-43-9 01/30/06 6010B 02/01/06 7440-47-3 01/30/06 6010B 02/01/06 7440-50-8 01/30/06 6010B 02/01/06 7439-92-1 01/30/06 7471A 02/03/06 7439-97-6 01/30/06 6010B 02/01/06 7440-02-0 01/30/06 6010B 02/01/06 7440-22-4	Date Method Date CAS Number Analyte 01/30/06 6010B 02/01/06 7440-36-0 Antimony 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 01/30/06 6010B 02/01/06 7440-47-3 Chromium 01/30/06 6010B 02/01/06 7440-50-8 Copper 01/30/06 6010B 02/01/06 7439-92-1 Lead 01/30/06 7471A 02/03/06 7439-97-6 Mercury 01/30/06 6010B 02/01/06 7440-02-0 Nickel 01/30/06 6010B 02/01/06 7440-22-4 Silver	Date Method Date CAS Number Analyte RL 01/30/06 6010B 02/01/06 7440-36-0 Antimony 7 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 7 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 0.3 01/30/06 6010B 02/01/06 7440-47-3 Chromium 0.7 01/30/06 6010B 02/01/06 7440-50-8 Copper 0.3 01/30/06 6010B 02/01/06 7439-92-1 Lead 3 01/30/06 7471A 02/03/06 7439-97-6 Mercury 0.07 01/30/06 6010B 02/01/06 7440-02-0 Nickel 1 01/30/06 6010B 02/01/06 7440-22-4 Silver 0.4	Date Method Date CAS Number Analyte RL mg/kg-dry 01/30/06 6010B 02/01/06 7440-36-0 Antimony 7 7 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 7 7 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 0.3 0.6 01/30/06 6010B 02/01/06 7440-47-3 Chromium 0.7 21.0 01/30/06 6010B 02/01/06 7440-50-8 Copper 0.3 29.3 01/30/06 6010B 02/01/06 7439-92-1 Lead 3 25 01/30/06 7471A 02/03/06 7439-97-6 Mercury 0.07 0.26 01/30/06 6010B 02/01/06 7440-02-0 Nickel 1 17 01/30/06 6010B 02/01/06 7440-22-4 Silver 0.4 0.4

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26E

LIMS ID: 06-1119 Matrix: Sediment

Data Release Authorized

Reported: 02/06/06

Sample ID: EW-RM06-24

DUPLICATE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
7 +	C010D	7	7	0.00			
Antimony	6010B	7 U	7 U	0.0%	+/- 7	${ m L}$	
Arsenic	6010B	7 U	7	0.0%	+/- 7	L	
Cadmium	6010B	0.6	0.6	0.0%	+/- 0.3	L	
Chromium	6010B	21.0	20.4	2.9%	+/- 20%		
Copper	6010B	29.3	31.0	5.6%	+/- 20%		
Lead	6010B	25	29	14.8%	+/- 20%		
Mercury	7471A	0.26	0.29	10.9%	+/- 0.07	L	
Nickel	6010B	17	16	6.1%	+/- 20%		
Silver	6010B	0.4 U	0.4 U	0.0%	+/- 0.4	L	
Zinc	6010B	71.0	69.1	2.7%	+/- 20%		

Reported in mg/kg-dry

^{*-}Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26F

LIMS ID: 06-1120 Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 57.0%

Sample ID: EW-RM06-25

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	8	8	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	. 8	11	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.3	0.7	
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.8	30.1	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.3	49.1	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	3	39	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.06	0.33	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	2	22	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.5	0.5	
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	1	95	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26I LIMS ID: 06-1123

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

Percent Total Solids: 84.1%

Sample ID: EW-RM06-26

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
01/30/06	6010B	02/01/06	7440-36-0	Antimony	6	6	U
01/30/06	6010B	02/01/06	7440-38-2	Arsenic	6	6	U
01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	Ü
01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.6	19.9	
01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	19.1	
01/30/06	6010B	02/01/06	7439-92-1	Lead	2	8	
01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.05	U
01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	22	
01/30/06	6010B	02/01/06	7440-22-4	Silver	0.3	0.3	U
01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	38.4	
	01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06 01/30/06	Date Method 01/30/06 6010B 01/30/06 6010B	Date Method Date 01/30/06 6010B 02/01/06 01/30/06 6010B 02/01/06	Date Method Date CAS Number 01/30/06 6010B 02/01/06 7440-36-0 01/30/06 6010B 02/01/06 7440-38-2 01/30/06 6010B 02/01/06 7440-43-9 01/30/06 6010B 02/01/06 7440-47-3 01/30/06 6010B 02/01/06 7440-50-8 01/30/06 6010B 02/01/06 7439-92-1 01/30/06 7471A 02/03/06 7439-97-6 01/30/06 6010B 02/01/06 7440-02-0 01/30/06 6010B 02/01/06 7440-22-4	Date Method Date CAS Number Analyte 01/30/06 6010B 02/01/06 7440-36-0 Antimony 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 01/30/06 6010B 02/01/06 7440-47-3 Chromium 01/30/06 6010B 02/01/06 7440-50-8 Copper 01/30/06 6010B 02/01/06 7439-92-1 Lead 01/30/06 7471A 02/03/06 7439-97-6 Mercury 01/30/06 6010B 02/01/06 7440-02-0 Nickel 01/30/06 6010B 02/01/06 7440-22-4 Silver	Date Method Date CAS Number Analyte RL 01/30/06 6010B 02/01/06 7440-36-0 Antimony 6 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 6 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 0.2 01/30/06 6010B 02/01/06 7440-47-3 Chromium 0.6 01/30/06 6010B 02/01/06 7440-50-8 Copper 0.2 01/30/06 6010B 02/01/06 7439-92-1 Lead 2 01/30/06 7471A 02/03/06 7439-97-6 Mercury 0.05 01/30/06 6010B 02/01/06 7440-02-0 Nickel 1 01/30/06 6010B 02/01/06 7440-22-4 Silver 0.3	Date Method Date CAS Number Analyte RL mg/kg-dry 01/30/06 6010B 02/01/06 7440-36-0 Antimony 6 6 01/30/06 6010B 02/01/06 7440-38-2 Arsenic 6 6 01/30/06 6010B 02/01/06 7440-43-9 Cadmium 0.2 0.2 01/30/06 6010B 02/01/06 7440-47-3 Chromium 0.6 19.9 01/30/06 6010B 02/01/06 7440-50-8 Copper 0.2 19.1 01/30/06 6010B 02/01/06 7439-92-1 Lead 2 8 01/30/06 7471A 02/03/06 7439-97-6 Mercury 0.05 0.05 01/30/06 6010B 02/01/06 7440-02-0 Nickel 1 22 01/30/06 6010B 02/01/06 7440-22-4 Silver 0.3 0.3

TOTAL METALS

Page 1 of 1

Sample ID: EW-RM06-28

SAMPLE

Lab Sample ID: IZ26H LIMS ID: 06-1122

Matrix: Sediment

Data Release Authorized Reported: 02/06/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Percent Total Solids: 80.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	01/30/06	6010B	02/01/06	7440-36-0	Antimony	. 6	6	U
3050B	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	6	6	
3050B	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.2	0.2	U
3050B	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.6	20.6	
3050B	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.2	22.5	
3050B	01/30/06	6010B	02/01/06	7439-92-1	Lead	2	11	
CLP	01/30/06	7471A	02/03/06	7439-97-6	Mercury	0.05	0.08	
3050B	01/30/06	6010B	02/01/06	7440-02-0	Nickel	1	20	
3050B	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.4	0.4	U
3050B	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.7	41.9	

TOTAL METALS

Page 1 of 1

Lab Sample ID: IZ26M

LIMS ID: 06-1127 Matrix: Water

Data Release Authorized: Reported: 02/06/06

Sample ID: EW-RM06-3-RB

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
	Date	Tie cirou	Date	CAD Number	miary ce	NII	шд/ ц	~~~~
3010A	01/30/06	6010B	02/01/06	7440-36-0	Antimony	0.05	0.05	U
3010A	01/30/06	6010B	02/01/06	7440-38-2	Arsenic	0.05	0.05	U
3010A	01/30/06	6010B	02/01/06	7440-43-9	Cadmium	0.002	0.002	U
3010A	01/30/06	6010B	02/01/06	7440-47-3	Chromium	0.005	0.005	U
3010A	01/30/06	6010B	02/01/06	7440-50-8	Copper	0.002	0.003	
3010A	01/30/06	6010B	02/01/06	7439-92-1	Lead	0.02	0.02	Ū.
7470A	01/30/06	7470A	02/01/06	7439-97-6	Mercury	0.0001	0.0001	Ü
3010A	01/30/06	6010B	02/01/06	7440-02-0	Nickel	0.01	0.01	U
3010A	01/30/06	6010B	02/01/06	7440-22-4	Silver	0.003	0.003	U
3010A	01/30/06	6010B	02/01/06	7440-66-6	Zinc	0.006	0.011	

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-01 SAMPLE

Lab Sample ID: IZ26A LIMS ID: 06-1115 Matrix: Sediment

Data Release Authorized: Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 06:06 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 17.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

pH: 7.0

Percent Moisture: 32.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	29	< 29 U
53469-21-9	Aroclor 1242	29	< 29 U
12672-29-6	Aroclor 1248	44	< 44 Y
11097-69-1	Aroclor 1254	29	160
11096-82-5	Aroclor 1260	29	280
11104-28-2	Aroclor 1221	29	< 29 U
11141-16-5	Aroclor 1232	31	< 31 Y

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	68.0%
Tetrachlorometaxylene	63.0%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-02 SAMPLE

Lab Sample ID: IZ26B LIMS ID: 06-1116 Matrix: Sediment

Data Release Authorized:

Date Extracted: 02/07/06

Date Analyzed: 02/11/06 06:28

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 led: 01/12/06

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 6.5 Percent Moisture: 16.3%

Instrument/Analyst: ECD2/AAR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	39
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	73.5%
Tetrachlorometaxylene	68.8%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-3 SAMPLE

Lab Sample ID: IZ26N LIMS ID: 06-1128 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 26.1 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

pH: 7.0

Percent Moisture: 14.4%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 12:32
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

CAS Number

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 Ŭ
11097-69-1	Aroclor 1254	19	< 19 U
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	67.5%
Tetrachlorometaxylene	71.2%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ260 LIMS ID: 0.6-1129

Matrix: Sediment

Data Release Authorized:

Reported: 02/24/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 12:55

Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-4

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06

Date Received: 01/25/06

Sample Amount: 8.95 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00

Silica Gel: No

pH: 6.9

Percent Moisture: 28.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	56	< 56 U
53469-21-9	Aroclor 1242	56	< 56 U
12672-29-6	Aroclor 1248	89	< 89 Y
11097-69-1	Aroclor 1254	1,500	< 1,500 Y
11096-82-5	Aroclor 1260	56	2,100 E
11104-28-2	Aroclor 1221	56	< 56 U
11141-16-5	Aroclor 1232	56	< 56 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	77.0%
Tetrachlorometaxylene	68.8%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ260 LIMS ID: 06-1129

Matrix: Sediment

Data Release Authorized: Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/13/06 19:54 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-4 DILUTION

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 8.95 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 10.0

Silica Gel: No

pH: 6.9

Percent Moisture: 28.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	560	< 560 U
53469-21-9	Aroclor 1242	560	< 560 U
12672-29-6	Aroclor 1248	560	< 560 U
11097-69-1	Aroclor 1254	890	< 890 Y
11096-82-5	Aroclor 1260	560	2,600
11104-28-2	Aroclor 1221	560	< 560 U
11141-16-5	Aroclor 1232	560	< 560 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	72.8%
Tetrachlorometaxylene	82.2%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ26P LIMS ID: 06-1130 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 13:18 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-5 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 9.35 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

tion Factor: 1.00 Silica Gel: No

pH: 7.0

Percent Moisture: 25.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	54	< 54 Ŭ
53469-21-9	Aroclor 1242	54	< 54 U
12672-29-6	Aroclor 1248	54	< 54 U
11097-69-1	Aroclor 1254	54	94
11096-82-5	Aroclor 1260	54	120
11104-28-2	Aroclor 1221	54	< 54 U
11141-16-5	Aroclor 1232	54	< 54 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	71.0%
Tetrachlorometaxylene	68.2%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-6 SAMPLE

Lab Sample ID: IZ26Q LIMS ID: 06-1131 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 1.84 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Dilution Factor: 1.00 Silica Gel: No

pH: 7.1

Percent Moisture: 26.5%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 13:40
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	270	< 270 U
53469-21-9	Aroclor 1242	270	< 270 U
12672-29-6	Aroclor 1248	270	< 270 U
11097-69-1	Aroclor 1254	270	< 270 U
11096-82-5	Aroclor 1260	270	160 J
11104-28-2	Aroclor 1221	270	< 270 U
11141-16-5	Aroclor 1232	270	< 270 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	70.8%
Tetrachlorometaxylene	74.0%

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-7
SAMPLE

Lab Sample ID: IZ26R LIMS ID: 06-1132

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 led: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.0

Percent Moisture: 28.7%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 14:03
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	29	< 29 Y
11097-69-1	Aroclor 1254	19	88
11096-82-5	Aroclor 1260	19	120
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	62.0%
Tetrachlorometaxylene	61.5%

Page 1 of 1

Sample ID: EW-RM06-8
SAMPLE

Lab Sample ID: IZ26S LIMS ID: 06-1133

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.9 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No pH: 6.9

Percent Moisture: 13.7%

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 14:26 Instrument/Analyst: ECD2/AAR GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	10 Ј
11096-82-5	Aroclor 1260	19	10 J
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

D = == = 1 = == 1 = 1 = 1 = 1 = 1	CT 00
Decachlorobiphenyl	67.2%
Tetrachlorometaxylene	69.5%

Page 1 of 1

Sample ID: EW-RM06-10 SAMPLE

Lab Sample ID: IZ26T LIMS ID: 06-1134

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 17.5 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

pH: 6.8

Percent Moisture: 31.2%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 14:49
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	28	< 28 U
53469-21-9	Aroclor 1242	28	< 28 U
12672-29-6	Aroclor 1248	28	< 28 U
11097-69-1	Aroclor 1254	28	78
11096-82-5	Aroclor 1260	28	120
11104-28-2	Aroclor 1221	28	< 28 U
11141-16-5	Aroclor 1232	28	< 28 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	61.5%
Tetrachlorometaxylene	63.2%

Page 1 of 1

Lab Sample ID: IZ26G LIMS ID: 06-1121

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 09:07 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-15 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 1.48 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

pH: 7.5

Percent Moisture: 41.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	510	< 510 Y
53469-21-9	Aroclor 1242	540	< 540 Y
12672-29-6	Aroclor 1248	680	< 680 Y
11097-69-1	Aroclor 1254	340	1,200
11096-82-5	Aroclor 1260	340	1,200
11104-28-2	Aroclor 1221	340	< 340 U
11141-16-5	Aroclor 1232	780	< 780 Y

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	68.0%
Tetrachlorometaxylene	72.2%

Page 1 of 1

Sample ID: EW-RM06-16 SAMPLE

Lab Sample ID: IZ26C LIMS ID: 06-1117

Matrix: Sediment
Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 18.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

рН: 6.9

Percent Moisture: 28.4%

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 06:51 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	28	< 28 U
53469-21-9	Aroclor 1242	28	< 28 U
12672-29-6	Aroclor 1248	33	< 33 Y
11097-69-1	Aroclor 1254	28	100
11096-82-5	Aroclor 1260	28	130
11104-28-2	Aroclor 1221	28	< 28 U
11141-16-5	Aroclor 1232	28	< 28 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	66.5%
Tetrachlorometaxylene	63.5%

Page 1 of 1

Lab Sample ID: IZ26D LIMS ID: 06-1118

Matrix: Sediment

Data Release Authorized: Reported: 02/15/06

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 07:14

Instrument/Analyst: ECD2/AAR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: EW-RM06-101 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 9.13 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 6.8

Percent Moisture: 27.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	55	< 55 U
53469-21-9	Aroclor 1242	55	< 55 U
12672-29-6	Aroclor 1248	55	< 55 U
11097-69-1	Aroclor 1254	55	100
11096-82-5	Aroclor 1260	55	230
11104-28-2	Aroclor 1221	55	< 55 U
11141-16-5	Aroclor 1232	55	< 55 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	66.8%
Tetrachlorometaxylene	68.5%

Page 1 of 1

Lab Sample ID: IZ26L

LIMS ID: 06-1126 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 12:09 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

Sample ID: EW-RM06-18 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.2

Percent Moisture: 7.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

, ***	
Decachlorobiphenyl	62.2%
Tetrachlorometaxylene	71.0%

Page 1 of 1

Sample ID: EW-RM06-19
SAMPLE

Lab Sample ID: IZ26U LIMS ID: 06-1135

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/24/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 26.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

рН: 6.8

Percent Moisture: 29.5%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 15:11
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	29	< 29 Y
11097-69-1	Aroclor 1254	19	130
11096-82-5	Aroclor 1260	19	320 E
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	74.8%
Tetrachlorometaxylene	67.8%

Page 1 of 1

Lab Sample ID: IZ26U LIMS ID: 06-1135

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/07/06
Date Analyzed: 02/13/06 20:17
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-19
DILUTION

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 26.0 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 5.00 Silica Gel: No

pH: 6.8

Percent Moisture: 29.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	96	< 96 U
53469-21-9	Aroclor 1242	96	< 96 U
12672-29-6	Aroclor 1248	96	< 96 U
11097-69-1	Aroclor 1254	140	< 140 Y
11096-82-5	Aroclor 1260	96	350
11104-28-2	Aroclor 1221	96	< 96 U
11141-16-5	Aroclor 1232	96	< 96 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	76.2%
Tetrachlorometaxylene	78.9%

Page 1 of 1

Sample ID: EW-RM06-20 SAMPLE

Lab Sample ID: IZ26K LIMS ID: 06-1125 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

pH: 7.0

Percent Moisture: 15.1%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 11:46
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	20 J
11096-82-5	Aroclor 1260	20	25
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	60.8%
Tetrachlorometaxylene	70.5%

Page 1 of 1

Lab Sample ID: IZ26V QC Report No: IZ26-Windward Environmental LIMS ID: 06-1136 Project: East Waterway Recontam. Mon. Matrix: Sediment

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 5.51 g-dry-wt

Sample ID: EW-RM06-21

SAMPLE

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

pH: 6.7

Percent Moisture: 26.9%

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 05:36 Instrument/Analyst: ECD5/AAR

Data Release Authorized:

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Reported: 02/15/06

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	91	< 91 U
53469-21-9	Aroclor 1242	91	< 91 U
12672-29-6	Aroclor 1248	91	< 91 U
11097-69-1	Aroclor 1254	91	83 J
11096-82-5	Aroclor 1260	91	120
11104-28-2	Aroclor 1221	91	< 91 U
11141-16-5	Aroclor 1232	91	< 91 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	63.8%
Tetrachlorometaxylene	63.2%

Page 1 of 1

Lab Sample ID: IZ26J LIMS ID: 06-1124

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 10:16
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-23 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.2

Percent Moisture: 26.4%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	36
11096-82-5	Aroclor 1260	20	59
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	73.8%
Tetrachlorometaxylene	66.0%

Page 1 of 1

Sample ID: EW-RM06-24 SAMPLE

Lab Sample ID: IZ26E LIMS ID: 06-1119

Matrix: Sediment
Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Date Received: 01/25/06

Sample Amount: 1.73 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.3

Percent Moisture: 32.0%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 07:37
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	290	< 290 U
53469-21-9	Aroclor 1242	290	< 290 U
12672-29-6	Aroclor 1248	290	< 290 U
11097-69-1	Aroclor 1254	290	< 290 U
11096-82-5	Aroclor 1260	290	210 J
11104-28-2	Aroclor 1221	290	< 290 U
11141-16-5	Aroclor 1232	290	< 290 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	65.8%
Tetrachlorometaxylene	67.8%

Page 1 of 1

Sample ID: EW-RM06-25 SAMPLE

Lab Sample ID: IZ26F LIMS ID: 06-1120

Matrix: Sediment
Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 7.32 g-dry-wt

Final Extract Volume: 5.0 mL

Dilution Factor: 1.00 Silica Gel: No

рН: 6.9

Percent Moisture: 41.4%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 08:45
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	68	< 68 U
53469-21-9	Aroclor 1242	68	< 68 U
12672-29-6	Aroclor 1248	68	< 68 U
11097-69-1	Aroclor 1254	68	190
11096-82-5	Aroclor 1260	68	260
11104-28-2	Aroclor 1221	68	< 68 U
11141-16-5	Aroclor 1232	68	< 68 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	70.5%
Tetrachlorometaxylene	66.8%

Page 1 of 1

Lab Sample ID: IZ26I LIMS ID: 06-1123

Matrix: Sediment

Data Release Authorized: Reported: 02/15/06

Date Extracted: 02/07/06 Date Analyzed: 02/11/06 09:53 Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: EW-RM06-26 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.2

Percent Moisture: 15.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	56
11096-82-5	Aroclor 1260	20	140
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	63.2%
Tetrachlorometaxylene	68.8%

Page 1 of 1

Sample ID: EW-RM06-28
SAMPLE

Lab Sample ID: IZ26H LIMS ID: 06-1122

Matrix: Sediment
Data Release Authorized:

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

pH: 7.0

Percent Moisture: 17.5%

Date Extracted: 02/07/06
Date Analyzed: 02/11/06 09:30
Instrument/Analyst: ECD2/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes

Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	35
11096-82-5	Aroclor 1260	19	44
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	63.5%
Tetrachlorometaxylene	69.0%

ORGANICS ANALYSIS DATA SHEET PCB by GC/ECD Method SW8082 Page 1 of 1

Sample ID: EW-RM06-3-RB SAMPLE

Lab Sample ID: IZ26M LIMS ID: 06-1127 QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Water

05-08-09-29

Data Release Authorized: Reported: 02/07/06

Date Sampled: 01/24/06 Date Received: 01/25/06

Date Extracted: 01/31/06
Date Analyzed: 02/06/06 20:44

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Instrument/Analyst: ECD5/AAR

Silica Gel: No
Acid Cleanup: No

GPC Cleanup: No Sulfur Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	1.0	< 1.0 U
53469-21-9	Aroclor 1242	1.0	< 1.0 U
12672-29-6	Aroclor 1248	1.0	< 1.0 U
11097-69-1	Aroclor 1254	1.0	< 1.0 U
11096-82-5	Aroclor 1260	1.0	< 1.0 U
11104-28-2	Aroclor 1221	1.0	< 1.0 U
11141-16-5	Aroclor 1232	1.0	< 1.0 U

Reported in μ g/L (ppb)

Decachlorobiphenyl	43.8%
Tetrachlorometaxylene	79.0%

Page 1 of 2

Lab Sample ID: IZ26A

LIMS ID: 06-1115 Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 12:52 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-01 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 32.6%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	630
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	18 J
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	56
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	24
106-47-8	4-Chloroaniline	98	< 98 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	20
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
38-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	18 J
99-09-2	3-Nitroaniline	98	< 98 U
33-32-9	Acenaphthene	20	16 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	200 98	< 200 U
132-64-9	Dibenzofuran	98 20	< 20 U
506-20-2		20 98	< 20 U < 98 U
000-20-2	2,6-Dinitrotoluene	78	< 98 0

Page 2 of 2

Sample ID: EW-RM06-01 SAMPLE

Lab Sample ID: IZ26A LIMS ID: 06-1115 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 12:52

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	20
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	110
86-74-8	Carbazole	20	21
120-12-7	Anthracene	20	70
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	300
129-00-0	Pyrene	20	220
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo(a)anthracene	20	120
117-81-7	bis(2-Ethylhexyl)phthalate	20	220
218-01-9	Chrysene	20	180
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	190
207-08-9	Benzo(k)fluoranthene	20	140
50-32-8	Benzo(a)pyrene	20	140
193-39-5	Indeno(1,2,3-cd)pyrene	20	50
53-70-3	Dibenz (a, h) anthracene	20	20
191-24-2	Benzo(g,h,i)perylene	20	50

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	84.4%	2-Fluorobiphenyl	78.0%
d14-p-Terphenyl	65.2%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	75.2%	2-Fluorophenol	77.9%
2,4,6-Tribromophenol	81.1%	d4-2-Chlorophenol	72.8%

Page 1 of 2

Lab Sample ID: IZ26B

LIMS ID: 06-1116 Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 13:26

Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-02 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 16.3%

pH: 6.5

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	330
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	68
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	51
621-64-7	N-Nitroso-Di-N-Propylamine	99	< 99 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	99	< 99 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	99	< 99 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	99	< 99 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	99	< 99 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	99	< 99 U
38-06-2	2,4,6-Trichlorophenol	99	< 99 U
95-95-4	2,4,5-Trichlorophenol	99	< 99 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	99	< 99 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	99	< 99 U
33-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
L00-02-7	4-Nitrophenol	99	< 99 U
132-64-9	Dibenzofuran	20	< 20 U
506-20-2	2,6-Dinitrotoluene	99	< 99 U

Page 2 of 2

Sample ID: EW-RM06-02 SAMPLE

Lab Sample ID: IZ26B LIMS ID: 06-1116 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 13:26

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	99	< 99 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	99	< 99 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	32
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	25
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	88
129-00-0	Pyrene	20	60
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	99	< 99 U
56-55-3	Benzo(a)anthracene	20	39
117-81-7	bis(2-Ethylhexyl)phthalate	20	76
218-01-9	Chrysene	20	64
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	62
207-08-9	Benzo(k) fluoranthene	20	46
50-32-8	Benzo(a)pyrene	20	45
193-39-5	Indeno(1,2,3-cd)pyrene	20	18 J
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	19 J

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	84.0%	2-Fluorobiphenyl	81.6%
d14-p-Terphenyl	63.2%	d4-1,2-Dichlorobenzene	65.6%
d5-Phenol	75.2%	2-Fluorophenol	79.2%
2,4,6-Tribromophenol	77.1%	d4-2-Chlorophenol	73.6%

Page 1 of 2

Lab Sample ID: IZ26N LIMS ID: 06-1128

Matrix: Sediment Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 20:50 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-3 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 14.4%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	44
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	39
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	33
621-64-7	N-Nitroso-Di-N-Propylamine	97	< 97 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	97	< 97 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	97	< 97 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	97	< 97 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	97	< 97 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	97	< 97 U
88-06-2	2,4,6-Trichlorophenol	97	< 97 Ŭ
95-95-4	2,4,5-Trichlorophenol	97	< 97 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	97	< 97 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	97	< 97 Ŭ
83-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	97	< 97 U
132-64-9	Dibenzofuran	20	< 20 U
606-20-2	2,6-Dinitrotoluene	97	< 97 U

Page 2 of 2

Sample ID: EW-RM06-3

SAMPLE

Lab Sample ID: IZ26N LIMS ID: 06-1128 Matrix: Sediment

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 20:50

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	97	< 97 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	97	< 97 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	97	< 97 U
85-01-8	Phenanthrene	20	15 J
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	34
129-00-0	Pyrene	20	36
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	97	< 97 U
56-55-3	Benzo(a)anthracene	20	15 J
117-81-7	bis(2-Ethylhexyl)phthalate	20	31
218-01-9	Chrysene	20	21
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	24
207-08-9	Benzo(k) fluoranthene	20	21
50-32-8	Benzo(a)pyrene	20	15 J
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

84.0%	2-Fluorobiphenyl	81.2%
103%	d4-1,2-Dichlorobenzene	68.0%
75.7%	2-Fluorophenol	81.3%
104%	d4-2-Chlorophenol	74.9%
	103% 75.7%	103% d4-1,2-Dichlorobenzene 75.7% 2-Fluorophenol

Page 1 of 2

Lab Sample ID: IZ260 LIMS ID: 06-1129

Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 21:24 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-4 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 28.4%

pH: 6.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	450
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	14 J
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	55
621-64-7	N-Nitroso-Di-N-Propylamine	100	< 100 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	100	< 100 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	100	< 100 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	22
106-47-8	4-Chloroaniline	100	< 100 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	100	< 100 U
91-57-6	2-Methylnaphthalene	20	19 J
77-47-4	Hexachlorocyclopentadiene	100	< 100 U
88-06-2	2,4,6-Trichlorophenol	100	< 100 U
95-95-4	2,4,5-Trichlorophenol	100	< 100 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	100	< 100 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	20
99-09-2	3-Nitroaniline	100	< 100 U
83-32-9	Acenaphthene	20	12 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	100	< 100 U
132-64-9	Dibenzofuran	20	< 20 U
606-20-2	2,6-Dinitrotoluene	100	< 100 U

Page 2 of 2

Lab Sample ID: IZ260

LIMS ID: 06-1129

Sample ID: EW-RM06-4 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Matrix: Sediment
Date Analyzed: 02/08/06 21:24

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	100	< 100 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	18 Ј
100-01-6	4-Nitroaniline	100	< 100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	98
86-74-8	Carbazole	20	18 J
120-12-7	Anthracene	20	69
84-74-2	Di-n-Butylphthalate	20	13 J
206-44-0	Fluoranthene	20	280
129-00-0	Pyrene	20	340
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	100	< 100 U
56-55-3	Benzo(a)anthracene	20	120
117-81-7	bis(2-Ethylhexyl)phthalate	20	250
218-01-9	Chrysene	20	170
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b)fluoranthene	20	260
207-08-9	Benzo(k) fluoranthene	20	160
50-32-8	Benzo(a)pyrene	20	140
193-39-5	Indeno(1,2,3-cd)pyrene	20	44
53-70-3	Dibenz (a, h) anthracene	20	15 J
191-24-2	Benzo(g,h,i)perylene	20	42

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	85.6%	2-Fluorobiphenyl	76.4%
d14-p-Terphenyl	106%	d4-1,2-Dichlorobenzene	68.0%
d5-Phenol	77.1%	2-Fluorophenol	85.6%
2,4,6-Tribromophenol	100%	d4-2-Chlorophenol	77.1%

Page 1 of 2

Lab Sample ID: IZ26P LIMS ID: 06-1130

Matrix: Sediment
Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06
Date Analyzed: 02/08/06 21:58
Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-5 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 25.3%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	220
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	22
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	33
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	19 Ј
106-47-8	4-Chloroaniline	98	< 98 U
37-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
38-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	18 J
99-09-2	3-Nitroaniline	98	< 98 U
33-32-9	Acenaphthene	20	11 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
L00-02-7	4-Nitrophenol	98	< 98 U
L32-64-9	Dibenzofuran	20	< 20 U
506-20-2	2,6-Dinitrotoluene	98	< 98 U

Page 2 of 2

Sample ID: EW-RM06-5 SAMPLE

Lab Sample ID: IZ26P LIMS ID: 06-1130 Matrix: Sediment

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon. 05-08-09-29

Date Analyzed: 02/08/06 21:58

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	17 J
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	77
86-74-8	Carbazole	20	16 J
120-12-7	Anthracene	20	64
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	230
129-00-0	Pyrene	20	250
85-68-7	Butylbenzylphthalate	20	14 J
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo (a) anthracene	20	110
117-81-7	bis(2-Ethylhexyl)phthalate	20	200
218-01-9	Chrysene	20	170
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	180
207-08-9	Benzo(k)fluoranthene	20	160
50-32-8	Benzo(a)pyrene	20	120
193-39-5	Indeno(1,2,3-cd)pyrene	20	35
53-70-3	Dibenz(a,h)anthracene	20	12 J
191-24-2	Benzo(g,h,i)perylene	20	34

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	80.0%	2-Fluorobiphenyl	74.8%
d14-p-Terphenyl	107%	d4-1,2-Dichlorobenzene	63.6%
d5-Phenol	73.1%	2-Fluorophenol	80.3%
2,4,6-Tribromophenol	97.6%	d4-2-Chlorophenol	73.6%

Page 1 of 2

Lab Sample ID: IZ26Q LIMS ID: 06-1131

Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 22:32 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-6 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.5%

pH: 7.1

108-95-2 Phenol 19	CAS Number	Analyte	RL	Result
95-57-8	108-95-2	Phenol	19	400
541-73-1 1,3-Dichlorobenzene 19 82 100-51-6 Benzyl Alcohol 19 < 19	111-44-4		19	< 19 U
106-46-7 1,4-Dichlorobenzene 19 82 100-51-6 Benzyl Alcohol 19 < 19	95-57-8	2-Chlorophenol	19	< 19 U
100-51-6 Benzyl Alcohol 19 19 19 19 19 19	541-73-1	1,3-Dichlorobenzene	19	< 19 U
95-50-1 1,2-Dichlorobenzene 19 < 19 U 95-48-7 2-Methylphenol 19 < 19 U 108-60-1 2,2'-Oxybis(1-Chloropropane) 19 < 19 U 106-44-5 4-Methylphenol 19 170	106-46-7	1,4-Dichlorobenzene	19	82
95-48-7	100-51-6	Benzyl Alcohol	19	< 19 U
108-60-1 2,2'-Oxybis(1-Chloropropane) 19 < 19	95-50-1	1,2-Dichlorobenzene	19	< 19 U
106-44-5 4-Methylphenol 19 170 621-64-7 N-Nitroso-Di-N-Propylamine 97 < 97 U	95-48-7	2-Methylphenol	19	< 19 U
106-44-5 4-Methylphenol 19 170 621-64-7 N-Nitroso-Di-N-Propylamine 97 < 97 U	108-60-1	2,2'-Oxybis(1-Chloropropane)	19	< 19 U
621-64-7 N-Nitroso-Di-N-Propylamine 97 < 97 U 67-72-1 Hexachloroethane 19 < 19 U 98-95-3 Nitrobenzene 19 < 19 U 78-59-1 Isophorone 19 < 19 U 88-75-5 2-Nitrophenol 97 < 97 U 105-67-9 2,4-Dimethylphenol 19 < 19 U 65-85-0 Benzoic Acid 190 < 190 U 111-91-1 bis (2-Chloroethoxy) Methane 19 < 19 U 120-83-2 2,4-Dichlorophenol 97 < 97 U 120-83-2 1,2,4-Trichlorobenzene 19 < 19 U 120-82-1 1,2,4-Trichlorobenzene 19 < 19 U 91-20-3 Naphthalene 19 < 19 U 91-20-3 Hexachlorobutadiene 19 < 19 U 91-50-7 4-Chloro-3-methylphenol 97 < 97 U 91-57-6 2-Methylnaphthalene 19 18 J 77-47-4 Hexachlorocyclopentadiene 97 < 97 U 98-06-2 2,4,6-Trichlorophenol 97 < 97 U 95-95-4 2,4,5-Trichlorophenol 97 < 97 U 91-58-7 2-Chloronaphthalene 19 < 19 U 91-58-7 2-Chloronaphthalene 19 <	106-44-5		19	170
67-72-1 Hexachloroethane 19 < 19	621-64-7		97	< 97 U
98-95-3 Nitrobenzene 19 < 19	67-72-1			< 19 U
88-75-5				
88-75-5	78-59-1	Isophorone	19	< 19 U
105-67-9 2,4-Dimethylphenol 19 < 19	88-75-5		97	< 97 U
65-85-0 Benzoic Acid 190 < 190	105-67-9			< 19 U
120-83-2 2,4-Dichlorophenol 97 < 97 U	65-85-0		190	< 190 U
120-83-2 2,4-Dichlorophenol 97 < 97 U	111-91-1	bis(2-Chloroethoxy) Methane	19	< 19 U
120-82-1 1,2,4-Trichlorobenzene 19 47 91-20-3 Naphthalene 19 47 106-47-8 4-Chloroaniline 97 < 97 U	120-83-2		97	< 97 U
91-20-3 Naphthalene 19 47 106-47-8 4-Chloroaniline 97 < 97 U	120-82-1		19	< 19 U
106-47-8 4-Chloroaniline 97 < 97 U	91-20-3		19	47
87-68-3 Hexachlorobutadiene 19 < 19	106-47-8			< 97 U
59-50-7 4-Chloro-3-methylphenol 97 < 97		Hexachlorobutadiene		
91-57-6 2-Methylnaphthalene 19 18 J 77-47-4 Hexachlorocyclopentadiene 97 < 97 U		4-Chloro-3-methylphenol		
77-47-4 Hexachlorocyclopentadiene 97 < 97 U				
88-06-2 2,4,6-Trichlorophenol 97 < 97	77-47-4		97	< 97 U
95-95-4 2,4,5-Trichlorophenol 97 < 97	88-06-2		97	< 97 U
91-58-7 2-Chloronaphthalene 19 < 19 U				
88-74-4 2-Nitroaniline 97 < 97 U				
131-11-3 Dimethylphthalate 19 < 19 U				
208-96-8 Acenaphthylene 19 18 J 99-09-2 3-Nitroaniline 97 < 97 U				
99-09-2 3-Nitroaniline 97 < 97 U				
83-32-9 Acenaphthene 19 25 51-28-5 2,4-Dinitrophenol 190 < 190 U				
51-28-5 2,4-Dinitrophenol 190 < 190 U				
100-02-7 4-Nitrophenol 97 < 97 U				
132-64-9 Dibenzofuran 19 24				
— · · · · · · · · · · · · · · · · · · ·		_		
	606-20-2	2,6-Dinitrotoluene	97	< 97 U

Page 2 of 2

Sample ID: EW-RM06-6 SAMPLE

Lab Sample ID: IZ26Q LIMS ID: 06-1131 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 22:32

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	97	< 97 U
84-66-2	Diethylphthalate	19	< 19 U
7005-72-3	4-Chlorophenyl-phenylether	19	< 19 U
86-73-7	Fluorene	19	35
100-01-6	4-Nitroaniline	97	< 97 U
534-52-1	4,6-Dinitro-2-Methylphenol	190	< 190 U
86-30-6	N-Nitrosodiphenylamine	19	< 19 U
101-55-3	4-Bromophenyl-phenylether	19	< 19 U
118-74-1	Hexachlorobenzene	19	< 19 U
87-86-5	Pentachlorophenol	97	< 97 U
85-01-8	Phenanthrene	19	120
86-74-8	Carbazole	19	22
120-12-7	Anthracene	19	83
84-74-2	Di-n-Butylphthalate	19	38
206-44-0	Fluoranthene	19	320
129-00-0	Pyrene	19	310
85-68-7	Butylbenzylphthalate	19	18 J
91-94-1	3,3'-Dichlorobenzidine	97	< 97 U
56-55-3	Benzo(a) anthracene	19	120
117-81-7	bis(2-Ethylhexyl)phthalate	19	260
218-01-9	Chrysene	19	180
117-84-0	Di-n-Octyl phthalate	19	< 19 U
205-99-2	Benzo(b) fluoranthene	19	220
207-08-9	Benzo(k) fluoranthene	19	160
50-32-8	Benzo(a)pyrene	19	130
193-39-5	Indeno(1,2,3-cd)pyrene	19	41
53-70-3	Dibenz (a, h) anthracene	19	16 J
191-24-2	Benzo(g,h,i)perylene	19	44

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	80.4%	2-Fluorobiphenyl	73.6%
d14-p-Terphenyl	114%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	73.9%	2-Fluorophenol	81.1%
2,4,6-Tribromophenol	95.5%	d4-2-Chlorophenol	74.4%

Page 1 of 2

Lab Sample ID: IZ26R LIMS ID: 06-1132

Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 19:05 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-7 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 28.7%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	520
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	22
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	99
621-64-7	N-Nitroso-Di-N-Propylamine	97	< 97 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
38-75-5	2-Nitrophenol	97	< 97 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
55-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	97	< 97 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	21
L06-47-8	4-Chloroaniline	97	< 97 U
37-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	97	< 97 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	97	< 97 U
38-06-2	2,4,6-Trichlorophenol	97	< 97 U
95-95-4	2,4,5-Trichlorophenol	97	< 97 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	97	< 97 U
L31-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	14 Ј
99-09-2	3-Nitroaniline	97	< 97 U
33-32-9	Acenaphthene	20	19 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
L00-02-7	4-Nitrophenol	97	< 97 U
132-64-9	Dibenzofuran	20	17 J
506-20-2	2,6-Dinitrotoluene	97	< 97 U

Sample ID: EW-RM06-7

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 2 of 2

SAMPLE Lab Sample ID: IZ26R QC Report No: IZ26-Windward Environmental

LIMS ID: 06-1132 Project: East Waterway Recontam. Mon. 05-08-09-29

Matrix: Sediment Date Analyzed: 02/09/06 19:05

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	97	< 97 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	27
100-01-6	4-Nitroaniline	97	< 97 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	97	< 97 U
85-01-8	Phenanthrene	20	100
86-74-8	Carbazole	20	27
120-12-7	Anthracene	20	86
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	270
129-00-0	Pyrene	20	240
85-68-7	Butylbenzylphthalate	20	22
91-94-1	3,3'-Dichlorobenzidine	97	< 97 U
56-55-3	Benzo(a) anthracene	20	110
117-81-7	bis(2-Ethylhexyl)phthalate	20	240
218-01-9	Chrysene	20	160
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	200
207-08-9	Benzo(k) fluoranthene	20	150
50-32-8	Benzo(a)pyrene	20	130
193-39-5	Indeno(1,2,3-cd)pyrene	20	34
53-70-3	Dibenz (a, h) anthracene	20	14 J
191-24-2	Benzo(g,h,i)perylene	20	34

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	75.6%
d14-p-Terphenyl	82.8%	d4-1,2-Dichlorobenzene	65.2%
d5-Phenol	79.5%	2-Fluorophenol	78.1%
2,4,6-Tribromophenol	80.5%	d4-2-Chlorophenol	77.1%

Page 1 of 2

Lab Sample ID: IZ26S LIMS ID: 06-1133

Matrix: Sediment Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 19:39 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-8 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/24/06

Date Received: 01/25/06

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.7%

pH: 6.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95~57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
521-64-7	N-Nitroso-Di-N-Propylamine	100	< 100 U
57-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
38-75-5	2-Nitrophenol	100	< 100 U
L05-67-9	2,4-Dimethylphenol	20	< 20 U
55-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
L20-83-2	2,4-Dichlorophenol	100	< 100 U
L20-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
L06-47-8	4-Chloroaniline	100	< 100 U
37-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	100	< 100 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	100	< 100 U
88-06-2	2,4,6-Trichlorophenol	100	< 100 U
95-95-4	2,4,5-Trichlorophenol	100	< 100 U
91~58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	100	< 100 U
.31-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
9-09-2	3-Nitroaniline	100	< 100 U
3-32-9	Acenaphthene	20	< 20 U
1-28-5	2,4-Dinitrophenol	200	< 200 U
.00-02-7	4-Nitrophenol	100	< 100 U
.32-64-9	Dibenzofuran	20	< 20 U
06-20-2	2,6-Dinitrotoluene	100	< 100 U

Page 2 of 2

LIMS ID: 06-1133

Lab Sample ID: IZ26S

SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Sample ID: EW-RM06-8

05-08-09-29

Matrix: Sediment
Date Analyzed: 02/09/06 19:39

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	100	< 100 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	100	< 100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	15 J
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	33
129-00-0	Pyrene	20	34
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	100	< 100 U
56-55-3	Benzo (a) anthracene	20	17 J
117-81-7	bis(2-Ethylhexyl)phthalate	20	74
218-01-9	Chrysene	20	24
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	27
207-08-9	Benzo(k) fluoranthene	20	19 J
50-32-8	Benzo(a)pyrene	20	16 J
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.0%	2-Fluorobiphenyl	74.8%
d14-p-Terphenyl	86.0%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	77.9%	2-Fluorophenol	73.9%
2,4,6-Tribromophenol	85.6%	d4-2-Chlorophenol	73.3%

Page 1 of 2

Lab Sample ID: IZ26T LIMS ID: 06-1134 Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 20:13 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-10 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 31.2%

pH: 6.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	470
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	28
106-46-7	1,4-Dichlorobenzene	20	28
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	100
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	30
106-47-8	4-Chloroaniline	98	< 98 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	19 J
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
88-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	20
99-09-2	3-Nitroaniline	98	< 98 Ü
83-32-9	Acenaphthene	20	18 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	98	< 98 U
132-64-9	Dibenzofuran	20	17 J
506-20-2	2,6-Dinitrotoluene	98	< 98 U

Page 2 of 2

Sample ID: EW-RM06-10 SAMPLE

Lab Sample ID: IZ26T QC Report No: IZ26-Windward Environmental LIMS ID: 06-1134 Project: East Waterway Recontam. Mon. Matrix: Sediment 05-08-09-29

Date Analyzed: 02/09/06 20:13

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	25
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 Ŭ
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	120
86-74-8	Carbazole	20	24
120-12-7	Anthracene	20	86
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	310
129-00-0	Pyrene	20	310
85-68-7	Butylbenzylphthalate	20	25
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo(a)anthracene	20	150
117-81-7	bis(2-Ethylhexyl)phthalate	20	260
218-01-9	Chrysene	20	230
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	290
207-08-9	Benzo(k) fluoranthene	20	190
50-32-8	Benzo(a)pyrene	20	180
193-39-5	Indeno(1,2,3-cd)pyrene	20	49
53-70-3	Dibenz (a, h) anthracene	20	19 J
191-24-2	Benzo(g,h,i)perylene	20	48

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	72.8%	2-Fluorobiphenyl	71.6%
d14-p-Terphenyl	86.8%	d4-1,2-Dichlorobenzene	60.0%
d5-Phenol	74.7%	2-Fluorophenol	73.9%
2,4,6-Tribromophenol	87.2%	d4-2-Chlorophenol	72.8%

Page 1 of 2

Lab Sample ID: IZ26G LIMS ID: 06-1121 Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 13:23
Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-15 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 41.9%

pH: 7.5

CAS Number	Analyte	RL	Result
L08-95-2	Phenol	39	340
L11-44-4	Bis-(2-Chloroethyl) Ether	39	< 39 U
95-57-8	2-Chlorophenol	39	< 39 U
541-73-1	1,3-Dichlorobenzene	39	20 J
L06-46-7	1,4-Dichlorobenzene	39	170
L00-51-6	Benzyl Alcohol	39	< 39 U
95-50-1	1,2-Dichlorobenzene	39	< 39 U
95-48-7	2-Methylphenol	39	< 39 U
L08-60-1	2,2'-Oxybis(1-Chloropropane)	39	< 39 U
L06-44-5	4-Methylphenol	39	100
521-64-7	N-Nitroso-Di-N-Propylamine	200	< 200 U
57-72-1	Hexachloroethane	39	< 39 U
8-95-3	Nitrobenzene	39	< 39 U
78-59-1	Isophorone	39	< 39 U
88-75-5	2-Nitrophenol	200	< 200 U
105-67-9	2,4-Dimethylphenol	39	< 39 U
55-85-0	Benzoic Acid	390	< 390 U
11-91-1	bis(2-Chloroethoxy) Methane	39	< 39 U
20-83-2	2,4-Dichlorophenol	200	< 200 U
.20-82-1	1,2,4-Trichlorobenzene	39	< 39 U
1-20-3	Naphthalene	39	120
06-47-8	4-Chloroaniline	200	< 200 U
37-68-3	Hexachlorobutadiene	39	< 39 U
9-50-7	4-Chloro-3-methylphenol	200	< 200 U
1-57-6	2-Methylnaphthalene	39	300
77-47-4	Hexachlorocyclopentadiene	200	< 200 U
88-06-2	2,4,6-Trichlorophenol	200	< 200 U
5-95-4	2,4,5-Trichlorophenol	200	< 200 U
1-58-7	2-Chloronaphthalene	39	< 39 U
88-74-4	2-Nitroaniline	200	< 200 U
.31-11-3	Dimethylphthalate	39	< 39 U
08-96-8	Acenaphthylene	39	44
9-09-2	3-Nitroaniline	200	< 200 U
3-32-9	Acenaphthene	39	96
1-28-5	2,4-Dinitrophenol	390	< 390 U
.00-02-7	4-Nitrophenol	200	< 200 U
.32-64-9	Dibenzofuran	39	81
	2,6-Dinitrotoluene	200	< 200 U

Page 2 of 2

Sample ID: EW-RM06-15 SAMPLE

Lab Sample ID: IZ26G LIMS ID: 06-1121 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 13:23

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	200	< 200 U
84-66-2	Diethylphthalate	39	< 39 U
7005-72-3	4-Chlorophenyl-phenylether	39	< 39 U
86-73-7	Fluorene	39	180
100-01-6	4-Nitroaniline	200	< 200 U
534-52-1	4,6-Dinitro-2-Methylphenol	390	< 390 U
86-30-6	N-Nitrosodiphenylamine	39	< 39 U
101-55-3	4-Bromophenyl-phenylether	39	< 39 U
118-74-1	Hexachlorobenzene	39	< 39 U
87-86-5	Pentachlorophenol	200	< 200 U
85-01-8	Phenanthrene	39	380
86-74-8	Carbazole	39	< 39 Ū
120-12-7	Anthracene	39	230
84-74-2	Di-n-Butylphthalate	39	120
206-44-0	Fluoranthene	39	920
129-00-0	Pyrene	39	1,200
85-68-7	Butylbenzylphthalate	39	< 39 U
91-94-1	3,3'-Dichlorobenzidine	200	< 200 U
56-55-3	Benzo(a)anthracene	39	360
117-81-7	bis(2-Ethylhexyl)phthalate	39	2,800
218-01-9	Chrysene	39	520
117-84-0	Di-n-Octyl phthalate	39	< 39 U
205-99-2	Benzo(b) fluoranthene	39	420
207-08-9	Benzo(k)fluoranthene	39	410
50-32-8	Benzo(a)pyrene	39	330
193-39-5	Indeno (1,2,3-cd) pyrene	39	86
53-70-3	Dibenz (a, h) anthracene	39	30 J
191-24-2	Benzo(g,h,i)perylene	39	110

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	78.2%	2-Fluorobiphenyl	79.5%
d14-p-Terphenyl	102%	d4-1,2-Dichlorobenzene	69.8%
d5-Phenol	81.1%	2-Fluorophenol	76.8%
2,4,6-Tribromophenol	108%	d4-2-Chlorophenol	80.5%

Page 1 of 2

Lab Sample ID: IZ26C

LIMS ID: 06-1117 Matrix: Sediment

Data Release Authorized:

Reported: 02/24/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 14:01 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-16

SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 28.4%

pH: 6.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	560
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	15 J
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	120
621-64-7	N-Nitroso-Di-N-Propylamine	100	< 100 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	100	< 100 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	100	< 100 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	34
106-47-8	4-Chloroaniline	100	< 100 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	100	< 100 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	100	< 100 U
88-06-2	2,4,6-Trichlorophenol	100	< 100 U
95-95-4	2,4,5-Trichlorophenol	100	< 100 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	100	< 100 U
131-11-3	Dimethylphthalate	20	< 20 U

Page 2 of 2

Sample ID: EW-RM06-16

SAMPLE

Lab Sample ID: IZ26C LIMS ID: 06-1117 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 14:01

CAS Number	Analyte	RL	Result
208-96-8	Acenaphthylene	20	23
99-09-2	3-Nitroaniline	100	< 100 U
83-32-9	Acenaphthene	20	32
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	100	< 100 U
132-64-9	Dibenzofuran	20	24
606-20-2	2,6-Dinitrotoluene	100	< 100 U
121-14-2	2,4-Dinitrotoluene	100	< 100 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	30
100-01-6	4-Nitroaniline	100	< 100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	130
86-74-8	Carbazole	20	24
120-12-7	Anthracene	20	90
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	370
129-00-0	Pyrene	20	220
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	100	< 100 U
56-55-3	Benzo(a) anthracene	20	140
117-81-7	bis(2-Ethylhexyl)phthalate	20	230
218-01-9	Chrysene	20	220
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo (b) fluoranthene	20	230
207-08-9	Benzo(k) fluoranthene	20	180
50-32-8	Benzo(a)pyrene	20	170
193-39-5	Indeno(1,2,3-cd)pyrene	20	49
53-70-3	Dibenz (a, h) anthracene	20	17 J
191-24-2	Benzo(g,h,i)perylene	20	45
	- (J,,, <u>F</u> <u>.</u>		

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	85.2%	2-Fluorobiphenyl	82.0%
d14-p-Terphenyl	69.2%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	78.1%	2-Fluorophenol	81.9%
2,4,6-Tribromophenol	83.2%	d4-2-Chlorophenol	75.7%

Page 1 of 2

Lab Sample ID: IZ26D LIMS ID: 06-1118

Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 14:35 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-101 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 27.1%

рН: 6.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	390
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	24
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	80
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	25
106-47-8	4-Chloroaniline	98	< 98 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
38-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	15 J
99-09-2	3-Nitroaniline	98	< 98 U
33-32-9	Acenaphthene	20	27
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	98	< 98 U
L32-64-9	Dibenzofuran	20	19 J
506-20-2	2,6-Dinitrotoluene	98	< 98 U
	-		

Page 2 of 2

Sample ID: EW-RM06-101

SAMPLE

Lab Sample ID: IZ26D LIMS ID: 06-1118 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 14:35

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	24
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	92
86-74-8	Carbazole	20	22
120-12-7	Anthracene	20	66
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	300
129-00-0	Pyrene	20	190
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo(a) anthracene	20	1.00
117-81-7	bis(2-Ethylhexyl)phthalate	20	210
218-01-9	Chrysene	20	160
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	190
207-08-9	Benzo(k) fluoranthene	20	120
50-32-8	Benzo(a)pyrene	20	120
193-39-5	Indeno(1,2,3-cd)pyrene	20	35
53-70-3	Dibenz (a, h) anthracene	20	13 Ј
191-24-2	Benzo(g,h,i)perylene	20	34

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	83.6%	2-Fluorobiphenyl	82.8%
d14-p-Terphenyl	72.4%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	75.5%	2-Fluorophenol	79.2%
2,4,6-Tribromophenol	90.9%	d4-2-Chlorophenol	73.1%

Page 1 of 2

Lab Sample ID: IZ26D LIMS ID: 06-1118

Matrix: Sediment
Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 12:49

Instrument/Analyst: NT6/PK
GPC Cleanup: No

Sample ID: EW-RM06-101
DILUTION

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29
Date Sampled: 01/12/06
Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 5.00 Percent Moisture: 27.1%

pH: 6.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	98	420
111-44-4	Bis-(2-Chloroethyl) Ether	98	< 98 U
95-57-8	2-Chlorophenol	98	< 98 Ŭ
541-73-1	1,3-Dichlorobenzene	98	< 98 U
106-46-7	1,4-Dichlorobenzene	98	< 98 U
100-51-6	Benzyl Alcohol	98	< 98 U
95-50-1	1,2-Dichlorobenzene	98	< 98 U
95-48-7	2-Methylphenol	98	< 98 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	98	< 98 U
L06-44-5	4-Methylphenol	98	89 J
521-64-7	N-Nitroso-Di-N-Propylamine	490	< 490 U
57-72-1	Hexachloroethane	98	< 98 U
98-95-3	Nitrobenzene	98	< 98 U
78-59-1	Isophorone	98	< 98 U
38-75-5	2-Nitrophenol	490	< 490 U
L05-67-9	2,4-Dimethylphenol	98	< 98 U
55-85-0	Benzoic Acid	980	< 980 U
111-91-1	bis(2-Chloroethoxy) Methane	98	< 98 U
120-83-2	2,4-Dichlorophenol	490	< 490 U
120-82-1	1,2,4-Trichlorobenzene	98	< 98 U
91-20-3	Naphthalene	98	< 98 U
L06-47-8	4-Chloroaniline	490	< 490 U
37-68-3	Hexachlorobutadiene	98	< 98 U
59-50-7	4-Chloro-3-methylphenol	490	< 490 U
91-57-6	2-Methylnaphthalene	98	< 98 U
77-47-4	Hexachlorocyclopentadiene	490	< 490 U
38-06-2	2,4,6-Trichlorophenol	490	< 490 U
95-95-4	2,4,5-Trichlorophenol	490	< 490 U
91-58-7	2-Chloronaphthalene	98	< 98 U
38-74-4	2-Nitroaniline	490	< 490 U
131-11-3	Dimethylphthalate	98	< 98 U
208-96-8	Acenaphthylene	98	< 98 U
99-09-2	3-Nitroaniline	490	< 490 U
33-32-9	Acenaphthene	98	< 98 U
51-28-5	2,4-Dinitrophenol	980	< 980 U
100-02-7	4-Nitrophenol	490	< 490 U
L32-64-9	Dibenzofuran	98	< 98 U
506-20-2	2,6-Dinitrotoluene	490	< 490 U

Page 2 of 2

Sample ID: EW-RM06-101
DILUTION

Lab Sample ID: IZ26D QC Report No: IZ26-Windward Environmental LIMS ID: 06-1118 Project: East Waterway Recontam. Mon. Matrix: Sediment 05-08-09-29

Date Analyzed: 02/09/06 12:49

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	490	< 490 U
84-66-2	Diethylphthalate	98	< 98 U
7005-72-3	4-Chlorophenyl-phenylether	98	< 98 U
86-73-7	Fluorene	98	< 98 U
100-01-6	4-Nitroaniline	490	< 490 U
534-52-1	4,6-Dinitro-2-Methylphenol	980	< 980 U
86-30-6	N-Nitrosodiphenylamine	98	< 98 U
101-55-3	4-Bromophenyl-phenylether	98	< 98 U
118-74-1	Hexachlorobenzene	98	< 98 U
87-86-5	Pentachlorophenol	490	< 490 U
85-01-8	Phenanthrene	98	93 J
86-74-8	Carbazole	98	< 98 U
120-12-7	Anthracene	98	61 J
84-74-2	Di-n-Butylphthalate	98	< 98 U
206-44-0	Fluoranthene	98	250
129-00-0	Pyrene	98	210
85-68-7	Butylbenzylphthalate	98	< 98 U
91-94-1	3,3'-Dichlorobenzidine	490	< 490 U
56-55-3	Benzo(a)anthracene	98	100
117-81-7	bis(2-Ethylhexyl)phthalate	98	210
218-01-9	Chrysene	98	160
117-84-0	Di-n-Octyl phthalate	98	< 98 U
205-99-2	Benzo(b)fluoranthene	98	150
207-08-9	Benzo(k) fluoranthene	98	100
50-32-8	Benzo(a)pyrene	98	110
193-39-5	Indeno(1,2,3-cd)pyrene	98	61 J
53-70-3	Dibenz (a, h) anthracene	98	< 98 U
191-24-2	Benzo(g,h,i)perylene	98	69 J

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	76.4%	2-Fluorobiphenyl	79.2%
d14-p-Terphenyl	82.2%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	80.9%	2-Fluorophenol	74.9%
2,4,6-Tribromophenol	73.7%	d4-2-Chlorophenol	74.4%

Page 1 of 2

Lab Sample ID: IZ26L LIMS ID: 06-1126 Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 16:14 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-18 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 7.4%

pH: 7.2

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
621-64-7	N-Nitroso-Di-N-Propylamine	100	< 100 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	100	< 100 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	100	< 100 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	100	< 100 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	100	< 100 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	100	< 100 U
88-06-2	2,4,6-Trichlorophenol	100	< 100 U
95-95-4	2,4,5-Trichlorophenol	100	< 100 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	100	< 100 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	100	< 100 U
83-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	100	< 100 U
132-64-9	Dibenzofuran	20	< 2.0 U.
606-20-2	2,6-Dinitrotoluene	100	< 100 U

Page 2 of 2

Lab Sample ID: IZ26L

LIMS ID: 06-1126 Matrix: Sediment

Date Analyzed: 02/09/06 16:14

Sample ID: EW-RM06-18
SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	100	< 100 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	100	< 100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyrene	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	100	< 100 U
56-55-3	Benzo(a)anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	< 20 U
207-08-9	Benzo(k)fluoranthene	20	< 20 U
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.0%	2-Fluorobiphenyl	72.4%
d14-p-Terphenyl	84.0%	d4-1,2-Dichlorobenzene	64.0%
d5-Phenol	67.7%	2-Fluorophenol	52.3%
2,4,6-Tribromophenol	63.7%	d4-2-Chlorophenol	59.7%

Page 1 of 2

Lab Sample ID: IZ26U LIMS ID: 06-1135

Matrix: Sediment
Data Release Authorized:
Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 20:47 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-19 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 29.5%

pH: 6.8

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	480
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	13 J
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	200
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	29
106-47-8	4-Chloroaniline	98	< 98 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	19 J
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
88-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	17 J
99-09-2	3-Nitroaniline	98	< 98 U
83-32-9	Acenaphthene	20	17 J
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	98	< 98 U
132-64-9	Dibenzofuran	20	< 20 U
606-20-2	2,6-Dinitrotoluene	98	< 98 U
500 AU A	2,0 Difficiocoluciic	J 0	\

Page 2 of 2

Sample ID: EW-RM06-19 SAMPLE

Lab Sample ID: IZ26U LIMS ID: 06-1135 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 20:47

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	29
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	130
86-74-8	Carbazole	20	23
120-12-7	Anthracene	20	90
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	340
129-00-0	Pyrene	20	330
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo(a)anthracene	20	130
117-81-7	bis(2-Ethylhexyl)phthalate	20	220
218-01-9	Chrysene	20	190
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	240
207-08-9	Benzo(k) fluoranthene	20	150
50-32-8	Benzo(a)pyrene	20	140
193-39-5	Indeno(1,2,3-cd)pyrene	20	42
53-70-3	Dibenz (a, h) anthracene	20	11 Ј
191-24-2	Benzo(g,h,i)perylene	20	43

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	77.6%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	97.2%	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	80.0%	2-Fluorophenol	74.1%
2,4,6-Tribromophenol	94.1%	d4-2-Chlorophenol	77.3%

Page 1 of 2

Lab Sample ID: IZ26K LIMS ID: 06-1125 Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06 Date Extracted: 02/06/06

Date Analyzed: 02/09/06 15:40 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-20 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
55-85-0	Benzoic Acid	200	< 200 U
L11-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	98	< 98 U
37-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
38-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	98	< 98 U
33-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	98	< 98 U
L32-64-9	Dibenzofuran	20	< 20 U
506-20-2	2,6-Dinitrotoluene	98	< 98 U

Page 2 of 2

Sample ID: EW-RM06-20 SAMPLE

Lab Sample ID: IZ26K LIMS ID: 06-1125 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 15:40

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	19 J
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	27
129-00-0	Pyrene	20	24
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo (a) anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	23
218-01-9	Chrysene	20	11 J
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	12 Ј
207-08-9	Benzo(k) fluoranthene	20	10 J
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	65.2%	2-Fluorobiphenyl	67.6%
d14-p-Terphenyl	78.4%	d4-1,2-Dichlorobenzene	56.8%
d5-Phenol	68.3%	2-Fluorophenol	65.3%
2,4,6-Tribromophenol	81.6%	d4-2-Chlorophenol	65.1%

Page 1 of 2

Lab Sample ID: IZ26V LIMS ID: 06-1136

Matrix: Sediment
Data Release Authorized:
Reported: 02/10/06

Date Extracted: 02/07/06

Date Analyzed: 02/09/06 18:31 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-21 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 25.8 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.9%

pH: 6.7

CAS Number	Analyte	RL	Result
108-95-2	Phenol	19	330
111-44-4	Bis-(2-Chloroethyl) Ether	19	< 19 U
95-57-8	2-Chlorophenol	19	< 19 U
541-73-1	1,3-Dichlorobenzene	19	< 19 U
106-46-7	1,4-Dichlorobenzene	19	17 J
100-51-6	Benzyl Alcohol	19	< 19 U
95-50-1	1,2-Dichlorobenzene	19	< 19 U
95-48-7	2-Methylphenol	19	< 19 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	19	< 19 U
106-44-5	4-Methylphenol	19	120
621-64-7	N-Nitroso-Di-N-Propylamine	97	< 97 U
67-72-1	Hexachloroethane	19	< 19 U
98-95-3	Nitrobenzene	19	< 19 U
78-59-1	Isophorone	19	< 19 U
88-75-5	2-Nitrophenol	97	< 97 U
105-67-9	2,4-Dimethylphenol	19	< 19 U
65-85-0	Benzoic Acid	190	< 190 U
111-91-1	bis(2-Chloroethoxy) Methane	19	< 19 U
120-83-2	2,4-Dichlorophenol	97	< 97 U
120-82-1	1,2,4-Trichlorobenzene	19	< 19 U
91-20-3	Naphthalene	19	21
106-47-8	4-Chloroaniline	97	< 97 U
87-68-3	Hexachlorobutadiene	19	< 19 U
59-50-7	4-Chloro-3-methylphenol	97	< 97 U
91-57-6	2-Methylnaphthalene	19	< 19 U
77-47-4	Hexachlorocyclopentadiene	97	< 97 U
88-06-2	2,4,6-Trichlorophenol	97	< 97 Ü
95-95-4	2,4,5-Trichlorophenol	97	< 97 U
91-58-7	2-Chloronaphthalene	19	< 19 U
88-74-4	2-Nitroaniline	97	< 97 U
131-11-3	Dimethylphthalate	19	< 19 U
208-96-8	Acenaphthylene	19	17 J
99-09-2	3-Nitroaniline	97	< 97 U
83-32-9	Acenaphthene	19	13 J
51-28-5	2,4-Dinitrophenol	190	< 190 U
100-02-7	4-Nitrophenol	97	< 97 U
132-64-9	Dibenzofuran	19	< 19 U
606-20-2	2,6-Dinitrotoluene	97	< 97 U

Page 2 of 2

Sample ID: EW-RM06-21 SAMPLE

Lab Sample ID: IZ26V LIMS ID: 06-1136 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 18:31

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	97	< 97 U
84-66-2	Diethylphthalate	19	< 19 U
7005-72-3	4-Chlorophenyl-phenylether	19	< 19 U
86-73-7	Fluorene	19	23
100-01-6	4-Nitroaniline	97	< 97 U
534-52-1	4,6-Dinitro-2-Methylphenol	190	< 190 U
86-30-6	N-Nitrosodiphenylamine	19	< 19 U
101-55-3	4-Bromophenyl-phenylether	19	< 19 U
118-74-1	Hexachlorobenzene	19	< 19 U
87-86-5	Pentachlorophenol	97	< 97 U
85-01-8	Phenanthrene	19	110
86-74-8	Carbazole	19	23
120-12-7	Anthracene	19	75
84-74-2	Di-n-Butylphthalate	19	< 19 U
206-44-0	Fluoranthene	19	290
129-00-0	Pyrene	19	250
85-68-7	Butylbenzylphthalate	19	< 19 U
91-94-1	3,3'-Dichlorobenzidine	97	< 97 U
56-55-3	Benzo(a)anthracene	19	140
117-81-7	bis(2-Ethylhexyl)phthalate	19	270
218-01-9	Chrysene	19	210
117-84-0	Di-n-Octyl phthalate	19	< 19 U
205-99-2	Benzo(b) fluoranthene	19	230
207-08-9	Benzo(k) fluoranthene	19	170
50-32-8	Benzo(a)pyrene	19	160
193-39-5	Indeno(1,2,3-cd)pyrene	19	39
53-70-3	Dibenz (a, h) anthracene	19	12 J
191-24-2	Benzo(g,h,i)perylene	19	37

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	78.4%	2-Fluorobiphenyl	77.2%
d14-p-Terphenyl	84.8%	d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	81.1%	2-Fluorophenol	78.4%
2,4,6-Tribromophenol	84.8%	d4-2-Chlorophenol	77.3%

Page 1 of 2

Lab Sample ID: IZ26J LIMS ID: 06-1124 Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 15:06 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-23 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 26.4%

pH: 7.2

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	36
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	16 J
621-64-7	N-Nitroso-Di-N-Propylamine	100	< 100 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	100	< 100 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	100	< 100 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	15 J
106-47-8	4-Chloroaniline	100	< 100 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	100	< 100 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	100	< 100 U
88-06-2	2,4,6-Trichlorophenol	100	< 100 U
95-95-4	2,4,5-Trichlorophenol	100	< 100 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	100	< 100 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	100	< 100 U
83-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	100	< 100 U
	4-Nitrophenoi Dibenzofuran	20	< 100 U < 20 U
132-64-9 606-20-2			
000-20-2	2,6-Dinitrotoluene	100	< 100 U

Page 2 of 2

Sample ID: EW-RM06-23 SAMPLE

Lab Sample ID: IZ26J LIMS ID: 06-1124 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 15:06

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	100	< 100 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	16 J
100-01-6	4-Nitroaniline	100	< 100 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	56
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	36
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	120
129-00-0	Pyrene	20	160
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	1.00	< 100 U
56-55-3	Benzo(a) anthracene	20	55
117-81-7	bis(2-Ethylhexyl)phthalate	20	33
218-01-9	Chrysene	20	80
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	76
207-08-9	Benzo(k) fluoranthene	20	47
50-32-8	Benzo(a)pyrene	20	52
193-39-5	Indeno(1,2,3-cd)pyrene	20	17 J
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	17 J

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	72.8%	2-Fluorobiphenyl	73.6%
d14-p-Terphenyl	76.4%	d4-1,2-Dichlorobenzene	63.2%
d5-Phenol	75.7%	2-Fluorophenol	72.8%
2,4,6-Tribromophenol	88.5%	d4-2-Chlorophenol	72.8%

Page 1 of 2

Lab Sample ID: IZ26E LIMS ID: 06-1119

Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/08/06 15:09 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-24 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29
Date Sampled: 01/12/06
Date Received: 01/25/06

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 32.0%

pH: 7.3

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	310
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	15 J
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	24
621-64-7	N-Nitroso-Di-N-Propylamine	99	< 99 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	.99	< 99 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	99	< 99 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	30
106-47-8	4-Chloroaniline	99	< 99 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	99	< 99 U
91-57-6	2-Methylnaphthalene	20	33
77-47-4	Hexachlorocyclopentadiene	99	< 99 U
38-06-2	2,4,6-Trichlorophenol	99	< 99 U
95-95-4	2,4,5-Trichlorophenol	99	< 99 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	99	< 99 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	22
99-09-2	3-Nitroaniline	99	< 99 U
33-32-9	Acenaphthene	20	27
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	99	< 99 U
132-64-9	Dibenzofuran	20	23
506-20-2	2,6-Dinitrotoluene	99	< 99 U

Page 2 of 2

Lab Sample ID: IZ26E

LIMS ID: 06-1119 Matrix: Sediment

Date Analyzed: 02/08/06 15:09

Sample ID: EW-RM06-24 SAMPLE

QC Report No: IZ26-Windward Environmental

Project: East Waterway Recontam. Mon.

05-08-09-29

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	99	< 99 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	36
100-01-6	4-Nitroaniline	99	< 99 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	150
86-74-8	Carbazole	20	20
120-12-7	Anthracene	20	80
84-74-2	Di-n-Butylphthalate	20	14 J
206-44-0	Fluoranthene	20	380
129-00-0	Pyrene	20	340
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	99	< 99 U
56-55-3	Benzo(a)anthracene	20	130
117-81-7	bis(2-Ethylhexyl)phthalate	20	380
218-01-9	Chrysene	20	170
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	210
207-08-9	Benzo(k)fluoranthene	20	140
50-32-8	Benzo(a)pyrene	20	130
193-39-5	Indeno(1,2,3-cd)pyrene	20	40
53-70-3	Dibenz (a, h) anthracene	20	13 Ј
191-24-2	Benzo(g,h,i)perylene	20	42

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	80.4%	2-Fluorobiphenyl	77.6%
d14-p-Terphenyl	84.0%	d4-1,2-Dichlorobenzene	62.4%
d5-Phenol	73.9%	2-Fluorophenol	78.1%
2,4,6-Tribromophenol	101%	d4-2-Chlorophenol	72.8%

Page 1 of 2

Lab Sample ID: IZ26F LIMS ID: 06-1120

Matrix: Sediment
Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06
Date Analyzed: 02/08/06 16:52

Instrument/Analyst: NT6NT6/PKPK
GPC Cleanup: No

Sample ID: EW-RM06-25 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL
Dilution Factor: 1.00
Percent Moisture: 41.4%

pH: 6.9

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	590
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	23
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	57
621-64-7	N-Nitroso-Di-N-Propylamine	99	< 99 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	99	< 99 บั
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	99	< 99 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	40
106-47-8	4-Chloroaniline	99	< 99 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	99	< 99 Ü
91-57-6	2-Methylnaphthalene	20	29
77-47-4	Hexachlorocyclopentadiene	99	< 99 U
88-06-2	2,4,6-Trichlorophenol	99	< 99 U
95-95-4	2,4,5-Trichlorophenol	99	< 99 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	99	< 99 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	31
99-09-2	3-Nitroaniline	99	< 99 U
33-32-9	Acenaphthene	20	30
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	99	< 99 U
132-64-9	Dibenzofuran	20	25
506-20-2	2,6-Dinitrotoluene	99	< 99 U
JUU-2U-2	2,0-Difficiocolucile	22	())

Page 2 of 2

Sample ID: EW-RM06-25 SAMPLE

Lab Sample ID: IZ26F LIMS ID: 06-1120 Matrix: Sediment QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/08/06 16:52

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	99	< 99 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	48
100-01-6	4-Nitroaniline	99	< 99 Ŭ
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	99	< 99 U
85-01-8	Phenanthrene	20	190
86-74-8	Carbazole	20	28
120-12-7	Anthracene	20	110
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	510
129-00-0	Pyrene	20	530
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	99	< 99 U
56-55-3	Benzo(a) anthracene	20	180
117-81-7	bis(2-Ethylhexyl)phthalate	20	270
218-01-9	Chrysene	20	260
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	320
207-08-9	Benzo(k)fluoranthene	20	220
50-32-8	Benzo(a)pyrene	20	190
193-39-5	Indeno(1,2,3-cd)pyrene	20	61
53-70-3	Dibenz (a, h) anthracene	20	21
191-24-2	Benzo(g,h,i)perylene	20	66

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	74.8%	2-Fluorobiphenyl	71.2%
d14-p-Terphenyl	95.6%	d4-1,2-Dichlorobenzene	63.2%
d5-Phenol	70.7%	2-Fluorophenol	74.7%
2,4,6-Tribromophenol	98.9%	d4-2-Chlorophenol	72.0%

Page 1 of 2

Lab Sample ID: IZ26I LIMS ID: 06-1123 Matrix: Sediment

Data Release Authorized:

Reported: 02/10/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 14:32 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-26 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.3%

pH: 7.2

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	98	< 98 U
87-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
88-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
88-74-4	2-Nitroaniline	98	< 98 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	98	< 98 U
83-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	200 98	< 98 U
132-64-9	Dibenzofuran	20	< 20 U
606-20-2	2,6-Dinitrotoluene	20 98	< 20 U

Page 2 of 2

Lab Sample ID: IZ26I LIMS ID: 06-1123

Matrix: Sediment Date Analyzed: 02/09/06 14:32 Sample ID: EW-RM06-26 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 Ŭ
85-01-8	Phenanthrene	20	12 J
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	32
129-00-0	Pyrene	20	39
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo(a) anthracene	20	13 J
117-81-7	bis(2-Ethylhexyl)phthalate	20	66
218-01-9	Chrysene	20	17 J
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b) fluoranthene	20	23
207-08-9	Benzo(k)fluoranthene	20	14 J
50-32-8	Benzo(a)pyrene	20	15 J
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz (a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	72.0%	2-Fluorobiphenyl	74.0%
d14-p-Terphenyl	79.6%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	74.1%	2-Fluorophenol	71.2%
2,4,6-Tribromophenol	89.6%	d4-2-Chlorophenol	72.0%

Page 1 of 2

Lab Sample ID: IZ26H LIMS ID: 06-1122 Matrix: Sediment

Data Release Authorized: Reported: 02/10/06

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 13:57 Instrument/Analyst: NT6NT6/PKPK

GPC Cleanup: No

Sample ID: EW-RM06-28
SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29
Date Sampled: 01/12/06
Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 17.5%

pH: 7.0

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	290
111-44-4	Bis-(2-Chloroethyl) Ether	20	< 20 U
95-57-8	2-Chlorophenol	20	< 20 U
541-73-1	1,3-Dichlorobenzene	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	20	< 20 U
106-44-5	4-Methylphenol	20	61
621-64-7	N-Nitroso-Di-N-Propylamine	98	< 98 U
67-72-1	Hexachloroethane	20	< 20 U
98-95-3	Nitrobenzene	20	< 20 U
78-59-1	Isophorone	20	< 20 U
88-75-5	2-Nitrophenol	98	< 98 U
105-67-9	2,4-Dimethylphenol	20	< 20 U
65-85-0	Benzoic Acid	200	< 200 U
111-91-1	bis(2-Chloroethoxy) Methane	20	< 20 U
120-83-2	2,4-Dichlorophenol	98	< 98 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
106-47-8	4-Chloroaniline	98	< 98 U
37-68-3	Hexachlorobutadiene	20	< 20 U
59-50-7	4-Chloro-3-methylphenol	98	< 98 U
91-57-6	2-Methylnaphthalene	20	< 20 U
77-47-4	Hexachlorocyclopentadiene	98	< 98 U
38-06-2	2,4,6-Trichlorophenol	98	< 98 U
95-95-4	2,4,5-Trichlorophenol	98	< 98 U
91-58-7	2-Chloronaphthalene	20	< 20 U
38-74-4	2-Nitroaniline	98	< 98 U
L31-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
99-09-2	3-Nitroaniline	98	< 98 U
33-32-9	Acenaphthene	20	< 20 U
51-28-5	2,4-Dinitrophenol	200	< 200 U
100-02-7	4-Nitrophenol	98	< 98 U
132-64-9	Dibenzofuran	20	< 20 U
506-20-2	2,6-Dinitrotoluene	98	< 98 U

Page 2 of 2

Sample ID: EW-RM06-28

SAMPLE

Lab Sample ID: IZ26H LIMS ID: 06-1122 Matrix: Sediment

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Analyzed: 02/09/06 13:57

CAS Number	Analyte	RL	Result
121-14-2	2,4-Dinitrotoluene	98	< 98 U
84-66-2	Diethylphthalate	20	< 20 U
7005-72-3	4-Chlorophenyl-phenylether	20	< 20 U
86-73-7	Fluorene	20	< 20 U
100-01-6	4-Nitroaniline	98	< 98 U
534-52-1	4,6-Dinitro-2-Methylphenol	200	< 200 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
101-55-3	4-Bromophenyl-phenylether	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	37
86-74-8	Carbazole	20	< 20 U
120-12-7	Anthracene	20	30
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	94
129-00-0	Pyrene	20	83
85-68-7	Butylbenzylphthalate	20	< 20 U
91-94-1	3,3'-Dichlorobenzidine	98	< 98 U
56-55-3	Benzo (a) anthracene	20	42
117-81-7	bis(2-Ethylhexyl)phthalate	20	76
218-01-9	Chrysene	20	67
117-84-0	Di-n-Octyl phthalate	20	< 20 U
205-99-2	Benzo(b)fluoranthene	20	72
207-08-9	Benzo(k) fluoranthene	20	53
50-32-8	Benzo(a)pyrene	20	49
193-39-5	Indeno(1,2,3-cd)pyrene	20	17 J
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	, 16 J

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	78.4%	2-Fluorobiphenyl	80.0%
d14-p-Terphenyl	83.2%	d4-1,2-Dichlorobenzene	69.2%
d5-Phenol	81.9%	2-Fluorophenol	78.9%
2,4,6-Tribromophenol	96.5%	d4-2-Chlorophenol	80.5%

Page 1 of 2

Sample ID: EW-RM06-3-RB

SAMPLE

Lab Sample ID: IZ26M LIMS ID: 06-1127 Matrix: Water

Data Release Authorized: Reported: 02/10/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Date Extracted: 01/27/06 Sample Amount: 500 mL
Date Analyzed: 01/30/06 19:37 Final Extract Volume: 0.50 mL
Instrument/Analyst: NT6/VTS Dilution Factor: 1.00

CAS Number	Analyte	RL	Result
108-95-2	Phenol	1.0	< 1.0 U
111-44-4	Bis-(2-Chloroethyl) Ether	1.0	< 1.0 U
95-57-8	2-Chlorophenol	1.0	< 1.0 U
541-73-1	1,3-Dichlorobenzene	1.0	< 1.0 U
106-46-7	1,4-Dichlorobenzene	1.0	< 1.0 U
100-51-6	Benzyl Alcohol	5.0	< 5.0 U
95-50-1	1,2-Dichlorobenzene	1.0	< 1.0 U
95-48-7	2-Methylphenol	1.0	< 1.0 U
108-60-1	2,2'-Oxybis(1-Chloropropane)	1.0	< 1.0 U
106-44-5	4-Methylphenol	1.0	< 1.0 U
621-64-7	N-Nitroso-Di-N-Propylamine	5.0	< 5.0 U
67-72-1	Hexachloroethane	1.0	< 1.0 U
98-95-3	Nitrobenzene	1.0	< 1.0 U
78-59-1	Isophorone	1.0	< 1.0 U
88-75-5	2-Nitrophenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	1.0	< 1.0 U
65-85-0	Benzoic Acid	10	< 10 U
111-91-1	bis(2-Chloroethoxy) Methane	1.0	< 1.0 U
120-83-2	2,4-Dichlorophenol	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	1.0	< 1.0 U
91-20-3	Naphthalene	1.0	< 1.0 U
106-47-8	4-Chloroaniline	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
59-50-7	4-Chloro-3-methylphenol	5.0	< 5.0 U
91-57-6	2-Methylnaphthalene	1.0	< 1.0 U
77-47-4	Hexachlorocyclopentadiene	5.0	< 5.0 U
88-06-2	2,4,6-Trichlorophenol	5.0	< 5.0 U
95-95-4	2,4,5-Trichlorophenol	5.0	< 5.0 U
91-58-7	2-Chloronaphthalene	1.0	< 1.0 U
88-74-4	2-Nitroaniline	5.0	< 5.0 U
131-11-3	Dimethylphthalate	1.0	< 1.0 U
208-96-8	Acenaphthylene	1.0	< 1.0 U
99-09-2	3-Nitroaniline	5.0	< 5.0 U
83-32-9	Acenaphthene	1.0	< 1.0 U
51-28-5	2,4-Dinitrophenol	10	< 10 U
100-02-7	4-Nitrophenol	5.0	< 5.0 U
132-64-9	Dibenzofuran	1.0	< 1.0 U
606-20-2	2,6-Dinitrotoluene	5.0	< 5.0 U
121-14-2	2,4-Dinitrotoluene	5.0	< 5.0 U
84-66-2	Diethylphthalate	1.0	< 1.0 U

Page 2 of 2

LIMS ID: 06-1127

Lab Sample ID: IZ26M

Sample ID: EW-RM06-3-RB

SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Matrix: Water
Date Analyzed: 01/30/06 19:37

CAS Number	Analyte	RL	Result
7005-72-3	4-Chlorophenyl-phenylether	1.0	< 1.0 U
86-73-7	Fluorene	1.0	< 1.0 U
100-01-6	4-Nitroaniline	5.0	< 5.0 U
534-52-1	4,6-Dinitro-2-Methylphenol	10	< 10 U
86-30-6	N-Nitrosodiphenylamine	1.0	< 1.0 U
101-55-3	4-Bromophenyl-phenylether	1.0	< 1.0 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-86-5	Pentachlorophenol	5.0	< 5.0 U
85-01-8	Phenanthrene	1.0	< 1.0 U
86-74-8	Carbazole	1.0	< 1.0 U
120-12-7	Anthracene	1.0	< 1.0 U
84-74-2	Di-n-Butylphthalate	1.0	< 1.0 U
206-44-0	Fluoranthene	1.0	< 1.0 U
129-00-0	Pyrene	1.0	< 1.0 U
85-68-7	Butylbenzylphthalate	1.0	< 1.0 U
91-94-1	3,3'-Dichlorobenzidine	5.0	< 5.0 U
56-55-3	Benzo(a)anthracene	1.0	< 1.0 U
117-81-7	bis(2-Ethylhexyl)phthalate	1.0	< 1.0 U
218-01-9	Chrysene	1.0	< 1.0 U
117-84-0	Di-n-Octyl phthalate	1.0	< 1.0 U
205-99-2	Benzo(b)fluoranthene	1.0	< 1.0 U
207-08-9	Benzo(k)fluoranthene	1.0	< 1.0 U
50-32-8	Benzo(a)pyrene	1.0	< 1.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	1.0	< 1.0 U
53-70-3	Dibenz(a,h)anthracene	1.0	< 1.0 U
191-24-2	Benzo(g,h,i)perylene	1.0	< 1.0 U

Reported in $\mu g/L$ (ppb)

d5-Nitrobenzene	89.6%	2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	64.0%	d4-1,2-Dichlorobenzene	56.4%
d5-Phenol	73.1%	2-Fluorophenol	73.3%
2.4.6-Tribromophenol	75.2%	d4-2-Chlorophenol	77.1%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Sample ID: EW-RM06-01 SAMPLE

Lab Sample ID: IZ26A LIMS ID: 06-1115 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 18:37

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Instrument/Analyst: ECD4/YZ

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 17.1 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 7.0
Percent Moisture: 32.6%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.5	< 1.5 Ü
319-85-7	beta-BHC	1.5	< 1.5 U
319-86-8	delta-BHC	1.5	< 1.5 U
58-89-9	gamma-BHC (Lindane)	1.5	< 1.5 U
76-44-8	Heptachlor	1.5	< 1.5 U
309-00-2	Aldrin	1.5	< 1.5 U
1024-57-3	Heptachlor Epoxide	6.4	< 6.4 Y
959-98-8	Endosulfan I	1.5	< 1.5 U
60-57-1	Dieldrin	7.7	< 7.7 Y
72-55-9	4,4'-DDE	2.9	< 2.9 U
72-20-8	Endrin	8.7	< 8.7 Y
33213-65-9	Endosulfan II	2.9	< 2.9 U
72-54-8	4,4'-DDD	2.9	< 2.9 U
1031-07-8	Endosulfan Sulfate	9.6	< 9.6 Y
50-29-3	4,4'-DDT	29	< 29 Y
72-43-5	Methoxychlor	15	< 15 U
53494-70-5	Endrin Ketone	2.9	< 2.9 U
7421-93-4	Endrin Aldehyde	2.9	< 2.9 U
5103-74-2	gamma Chlordane	6.3	< 6.3 Y
5103-71-9	alpha Chlordane	1.5	< 1.5 U
8001-35-2	Toxaphene	150	< 150 U
118-74-1	Hexachlorobenzene	1.5	< 1.5 U
87-68-3	Hexachlorobutadiene	1.5	< 1.5 U
789-02-6	2,4'-DDT	2.9	< 2.9 U
3424-82-6	2,4'-DDE	2.9	< 2.9 U
53-19-0	2,4'-DDD	2.9	< 2.9 U
27304-13-8	oxy Chlordane	2.9	< 2.9 U
5103-73-1	cis-Nonachlor	2.9	< 2.9 U
39765-80-5	trans-Nonachlor	2.9	< 2.9 U
2385-85-5	Mirex	2.9	< 2.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	111%
Tetrachlorometaxylene	77.0%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ26B LIMS ID: 06-1116 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 19:01 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

Sample ID: EW-RM06-02 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

pH: 6.5

Percent Moisture: 16.3%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 U
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98-8	Endosulfan I	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 U
53494-70-5	Endrin Ketone	2.0	< 2.0 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 U
5103-71-9	alpha Chlordane	0.98	< 0.98 U
8001-35-2	Toxaphene	98	< 98 U
118-74-1	Hexachlorobenzene	0.98	< 0.98 U
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U
27304-13-8	oxy Chlordane	2.0	< 2.0 U
5103-73-1	cis-Nonachlor	2.0	< 2.0 U
39765-80-5	trans-Nonachlor	2.0	< 2.0 U
2385-85-5	Mirex	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	99.0%
Tetrachlorometaxylene	89.0%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Sample ID: EW-RM06-3 SAMPLE

Lab Sample ID: IZ26N LIMS ID: 06-1128

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Sediment

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

Date Received: 01/25/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 02:20 Instrument/Analyst: ECD4/YZ

Sample Amount: 26.3 g-dry-wt Final Extract Volume: 5.0 mL Dilution Factor: 1.00

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Silica Gel: Yes pH: 7.0

Acid Cleanup: No

Percent Moisture: 14.4%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.95	< 0.95 t
319-85-7	beta-BHC	0.95	< 0.95 t
319-86-8	delta-BHC	0.95	< 0.95 T
58-89-9	gamma-BHC (Lindane)	0.95	< 0.95 T
76-44-8	Heptachlor	0.95	< 0.95 U
309-00-2	Aldrin	0.95	< 0.95 ₹
1024-57-3	Heptachlor Epoxide	0.95	< 0.95 T
959-98-8	Endosulfan I	0.95	< 0.95 T
50-57-1	Dieldrin	1.9	< 1.9 T
72-55-9	4,4'-DDE	1.9	< 1.9 T
72-20-8	Endrin	1.9	< 1.9 ₹
33213-65-9	Endosulfan II	1.9	< 1.9 1
72-54-8	4,4'-DDD	1.9	< 1.9 0
1031-07-8	Endosulfan Sulfate	1.9	< 1.9 T
50-29-3	4,4'-DDT	1.9	< 1.9
72-43-5	Methoxychlor	9.5	< 9.5 1
53494-70-5	Endrin Ketone	1.9	< 1.9
7421-93-4	Endrin Aldehyde	1.9	< 1.9 T
5103-74-2	gamma Chlordane	0.95	< 0.95 T
5103-71-9	alpha Chlordane	0.95	< 0.95 T
3001-35-2	Toxaphene	95	< 95 1
18-74-1	Hexachlorobenzene	0.95	< 0.95 T
37-68-3	Hexachlorobutadiene	0.95	< 0.95
89-02-6	2,4'-DDT	1.9	< 1.9
3424-82-6	2,4'-DDE	1.9	< 1.9 T
3-19-0	2,4'-DDD	1.9	< 1.9 (
7304-13-8	oxy Chlordane	1.9	< 1.9 7
5103-73-1	cis-Nonachlor	1.9	< 1.9 (
	trans-Nonachlor	1.9	< 1.9 (
2385-85-5	Mirex	1.9	< 1.9 1

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	92.0%
Tetrachlorometaxylene	82.5%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ260 LIMS ID: 06-1129 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 02:44 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

Sample ID: EW-RM06-4 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 8.99 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes pH: 6.9

Percent Moisture: 28.4%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	2.8	< 2.8 U
319-85-7	beta-BHC	2.8	< 2.8 U
319-86-8	delta-BHC	2.8	< 2.8 U
58-89-9	gamma-BHC (Lindane)	2.8	< 2.8 U
76-44-8	Heptachlor	2.8	< 2.8 U
309-00-2	Aldrin	2.8	< 2.8 U
1024-57-3	Heptachlor Epoxide	6.5	< 6.5 Y
959-98-8	Endosulfan I	2.8	< 2.8 U
60-57-1	Dieldrin	5.6	< 5.6 U
72-55-9	4,4'-DDE	5.6	< 5.6 U
72-20-8	Endrin	5.6	< 5.6 U
33213-65-9	Endosulfan II	5.6	< 5.6 U
72-54-8	4,4'-DDD	5.6	< 5.6 U
1031-07-8	Endosulfan Sulfate	8.2	< 8.2 Y
50-29-3	4,4'-DDT	24	< 24 Y
72-43-5	Methoxychlor	28	< 28 U
53494-70-5	Endrin Ketone	5.6	< 5.6 Ŭ
7421-93-4	Endrin Aldehyde	5.6	< 5.6 U
5103-74-2	gamma Chlordane	5.3	< 5.3 Y
5103-71-9	alpha Chlordane	2.8	< 2.8 U
8001-35-2	Toxaphene	280	< 280 U
118-74-1	Hexachlorobenzene	2.8	< 2.8 U
87-68-3	Hexachlorobutadiene	2.8	< 2.8 U
789-02-6	2,4'-DDT	5.6	< 5.6 U
3424-82-6	2,4'-DDE	5.6	< 5.6 U
53-19-0	2,4'-DDD	5.6	< 5.6 U
27304-13-8	oxy Chlordane	5.6	< 5.6 U
5103-73-1	cis-Nonachlor	5.6	< 5.6 U
39765-80-5	trans-Nonachlor	5.6	< 5.6 U
2385-85-5	Mirex	5.6	< 5.6 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	94.0%
Tetrachlorometaxylene	77.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Sample ID: EW-RM06-5 SAMPLE

Lab Sample ID: IZ26P LIMS ID: 06-1130

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Sediment

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

Date Received: 01/25/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 03:08 Instrument/Analyst: ECD4/YZ

Sample Amount: 9.36 g-dry-wt Final Extract Volume: 5.0 mL

GPC Cleanup: No Sulfur Cleanup: Yes Dilution Factor: 1.00 Silica Gel: Yes

Florisil Cleanup: No Acid Cleanup: No

pH: 7.0 Percent Moisture: 25.3%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	2.7	< 2.7 U
319-85-7	beta-BHC	2.7	< 2.7 U
319-86-8	delta-BHC	2.7	< 2.7 U
58-89-9	gamma-BHC (Lindane)	2.7	< 2.7 U
76-44-8	Heptachlor	2.7	< 2.7 U
309-00-2	Aldrin	2.7	< 2.7 U
1024-57-3	Heptachlor Epoxide	2.7	< 2.7 U
959-98-8	Endosulfan I	2.7	< 2.7 U
60-57-1	Dieldrin	9.8	< 9.8 Y
72-55-9	4,4'-DDE	5.3	< 5.3 U
72-20-8	Endrin	5.3	< 5.3 Ü
33213-65-9	Endosulfan II	5.3	< 5.3 U
72-54-8	4,4'-DDD	5.3	< 5.3 U
1031-07-8	Endosulfan Sulfate	11	< 11 Y
50-29-3	4,4'-DDT	38	< 38 Y
72-43-5	Methoxychlor	27	< 27 U
53494-70-5	Endrin Ketone	5.3	< 5.3 U
7421-93-4	Endrin Aldehyde	5.3	< 5.3 U
5103-74-2	gamma Chlordane	2.7	< 2.7 U
5103-71-9	alpha Chlordane	2.7	< 2.7 U
3001-35-2	Toxaphene	270	< 270 U
118-74-1	Hexachlorobenzene	2.7	< 2.7 U
37-68-3	Hexachlorobutadiene	2.7	< 2.7 U
789-02-6	2,4'-DDT	5.3	< 5.3 U
3424-82-6	2,4'-DDE	5.3	< 5.3 U
53-19-0	2,4'-DDD	5.3	< 5.3 U
27304-13-8	oxy Chlordane	5.3	< 5.3 U
5103-73-1	cis-Nonachlor	5.3	< 5.3 U
39765-80-5	trans-Nonachlor	5.3	< 5.3 U
2385-85-5	Mirex	5.3	< 5.3 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	89.8%
Tetrachlorometaxylene	79.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: IZ26Q LIMS ID: 06-1131 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 03:33 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

Sample ID: EW-RM06-6 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 1.87 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes pH: 7.1

Percent Moisture: 26.5%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	13	< 13 U
319-85-7	beta-BHC	13	< 13 U
319-86-8	delta-BHC	13	< 13 U
58-89-9	gamma-BHC (Lindane)	13	< 13 U
76-44-8	Heptachlor	13	< 13 U
309-00-2	Aldrin	13	< 13 U
1024-57-3	Heptachlor Epoxide	13	< 13 U
959-98-8	Endosulfan I	13	< 13 U
60-57-1	Dieldrin	27	< 27 U
72-55-9	4,4'-DDE	27	< 27 U
72-20-8	Endrin	27	< 27 U
33213-65-9	Endosulfan II	27	< 27 U
72-54-8	4,4'-DDD	27	< 27 U
1031-07-8	Endosulfan Sulfate	27	< 27 U
50-29-3	4,4'-DDT	27	< 27 U
72-43-5	Methoxychlor	130	< 130 U
53494-70-5	Endrin Ketone	27	< 27 U
7421-93-4	Endrin Aldehyde	27	< 27 U
5103-74-2	gamma Chlordane	13	< 13 U
5103-71-9	alpha Chlordane	13	< 13 U
8001-35-2	Toxaphene	1,300	< 1,300 U
118-74-1	Hexachlorobenzene	13	< 13 U
87-68-3	Hexachlorobutadiene	13	< 13 U
789-02-6	2,4'-DDT	27	< 27 U
3424-82-6	2,4'-DDE	27	< 27 U
53-19-0	2,4'-DDD	27	< 27 U
27304-13-8	oxy Chlordane	27	< 27 U
5103-73-1	cis-Nonachlor	27	< 27 U
39765-80-5	trans-Nonachlor	27	< 27 U
2385-85-5	Mirex	27	< 27 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	90.5%
Tetrachlorometaxylene	81.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD Page 1 of 1

Sample ID: EW-RM06-7 SAMPLE

Lab Sample ID: IZ26R LIMS ID: 06-1132

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Sample Amount: 25.9 g-dry-wt

Matrix: Sediment

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

Date Received: 01/25/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 03:57 Instrument/Analyst: ECD4/YZ

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

pH: 7.0

Acid Cleanup: No

Percent Moisture: 28.7%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.97	< 0.97 U
319-85-7	beta-BHC	0.97	< 0.97 Ŭ
319-86-8	delta-BHC	0.97	< 0.97 U
58-89-9	gamma-BHC (Lindane)	0.97	< 0.97 U
76-44-8	Heptachlor	0.97	< 0.97 U
309-00-2	Aldrin	0.97	< 0.97 U
1024-57-3	Heptachlor Epoxide	4.0	< 4.0 Y
959-98-8	Endosulfan I	0.97	< 0.97 U
60-57-1	Dieldrin	5.6	< 5.6 Y
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-20-8	Endrin	6.6	< 6.6 Y
33213-65-9	Endosulfan II	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
1031-07-8	Endosulfan Sulfate	5.3	< 5.4 Y
50-29-3	4,4'-DDT	17	< 17 Y
72-43-5	Methoxychlor	9.7	< 9.7 U
53494-70-5	Endrin Ketone	1.9	< 1.9 U
7421-93-4	Endrin Aldehyde	1.9	< 1.9 U
5103-74-2	gamma Chlordane	3.9	< 3.9 Y
5103-71-9	alpha Chlordane	0.97	< 0.97 U
8001-35-2	Toxaphene	97	< 97 U
118-74-1	Hexachlorobenzene	0.97	< 0.97 U
87-68-3	Hexachlorobutadiene	0.97	< 0.97 U
789-02-6	2,4'-DDT	1.9	< 1.9 U
3424-82-6	2,4'-DDE	1.9	< 1.9 U
53-19-0	2,4'-DDD	1.9	< 1.9 U
27304-13-8	oxy Chlordane	1.9	< 1.9 U
5103-73-1	cis-Nonachlor	1.9	< 1.9 U
39765-80-5	trans-Nonachlor	1.9	< 1.9 U
2385-85-5	Mirex	1.9	< 1.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	114%
Tetrachlorometaxylene	95.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

LIMS ID: 06-1133

Matrix: Sediment

Reported: 02/15/06

Data Release Authorized:

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 04:21

Instrument/Analyst: ECD4/YZ

SAMPLE Lab Sample ID: IZ26S

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon. 05-08-09-29

Sample ID: EW-RM06-8

Date Sampled: 01/24/06

Date Received: 01/25/06

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 6.9 Percent Moisture: 13.7%

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.0	< 1.0 U
319-85-7	beta-BHC	1.0	< 1.0 U
319-86-8	delta-BHC	1.0	< 1.0 U
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
1024-57-3	Heptachlor Epoxide	1.0	< 1.0 U
959-98-8	Endosulfan I	1.0	< 1.0 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 Ŭ
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	10	< 10 U
53494-70-5	Endrin Ketone	2.0	< 2.0 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	1.0	< 1.0 U
5103-71-9	alpha Chlordane	1.0	< 1.0 U
8001-35-2	Toxaphene	100	< 100 U
118-74-1	Hexachlorobenzene	1.0	< 1.0 U
87-68-3	Hexachlorobutadiene	1.0	< 1.0 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U
27304-13-8	oxy Chlordane	2.0	< 2.0 U
5103-73-1	cis-Nonachlor	2.0	< 2.0 U
39765-80-5	trans-Nonachlor	2.0	< 2.0 U
2385-85-5	Mirex	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	91.8%
Tetrachlorometaxylene	93.0%

Sample ID: EW-RM06-10 SAMPLE

Lab Sample ID: IZ26T LIMS ID: 06-1134

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Sample Amount: 17.3 g-dry-wt

Matrix: Sediment

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

Date Received: 01/25/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 04:46 Instrument/Analyst: ECD4/YZ

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

pH: 6.8

Acid Cleanup: No

Percent Moisture: 31.2%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.4	< 1.4 U
319-85-7	beta-BHC	1.4	< 1.4 U
319-86-8	delta-BHC	1.4	< 1.4 U
58-89-9	gamma-BHC (Lindane)	1.4	< 1.4 U
76-44-8	Heptachlor	1.4	< 1.4 U
309-00-2	Aldrin	1.4	< 1.4 U
1024-57-3	Heptachlor Epoxide	4.6	< 4.6 Y
959-98-8	Endosulfan I	1.4	< 1.4 U
60-57-1	Dieldrin	5.5	< 5.5 Y
72-55-9	4,4'-DDE	2.9	< 2.9 U
72-20-8	Endrin	7.7	< 7.7 Y
33213-65-9	Endosulfan II	2.9	< 2.9 U
72-54-8	4,4'-DDD	2.9	< 2.9 U
1031-07-8	Endosulfan Sulfate	7.9	< 7.9 Y
50-29-3	4,4'-DDT	21	< 20 Y
72-43-5	Methoxychlor	14	< 14 U
53494-70-5	Endrin Ketone	2.9	< 2.9 U
7421-93-4	Endrin Aldehyde	2.9	< 2.9 U
5103-74-2	gamma Chlordane	4.4	< 4.4 Y
5103-71-9	alpha Chlordane	1.4	< 1.4 U
8001-35-2	Toxaphene	140	< 140 U
118-74-1	Hexachlorobenzene	1.4	< 1.4 U
87-68-3	Hexachlorobutadiene	1.4	< 1.4 U
789-02-6	2,4'-DDT	2.9	< 2.9 U
3424-82-6	2,4'-DDE	2.9	< 2.9 U
53-19-0	2,4'-DDD	2.9	< 2.9 U
27304-13-8	oxy Chlordane	2.9	< 2.9 U
5103-73-1	cis-Nonachlor	2.9	< 2.9 U
39765-80-5	trans-Nonachlor	2.9	< 2.9 U
2385-85-5	Mirex	2.9	< 2.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	106%
Tetrachlorometaxylene	94.0%

Page 1 of 1

Sample ID: EW-RM06-15 SAMPLE

Lab Sample ID: IZ26G LIMS ID: 06-1121 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 21:52 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 1.46 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 7.5

Percent Moisture: 41.9%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	17	< 17 U
319-85-7	beta-BHC	17	< 17 U
319-86-8	delta-BHC	17	< 17 U
58-89-9	gamma-BHC (Lindane)	17	< 17 U
76-44-8	Heptachlor	17	< 17 U
309-00-2	Aldrin	17	< 17 U
1024-57-3	Heptachlor Epoxide	66	< 66 Y
959-98-8	Endosulfan I	17	< 17 U
60-57-1	Dieldrin	110	< 110 Y
72-55-9	4,4'-DDE	34	< 34 U
72-20-8	Endrin	94	< 94 Y
33213-65-9	Endosulfan II	34	< 34 U
72-54-8	4,4'-DDD	61	< 61 Y
L031-07-8	Endosulfan Sulfate	62	< 62 Y
50-29-3	4,4'-DDT	270	< 270 Y
72-43-5	Methoxychlor	170	< 170 U
53494-70-5	Endrin Ketone	34	< 34 U
7421-93-4	Endrin Aldehyde	34	< 34 U
5103-74-2	gamma Chlordane	17	< 17 U
5103-71-9	alpha Chlordane	17	< 17 U
3001-35-2	Toxaphene	1,700	< 1,700 U
118-74-1	Hexachlorobenzene	17	< 17 U
37-68-3	Hexachlorobutadiene	17	< 17 U
789-02-6	2,4'-DDT	34	< 34 U
3424-82-6	2,4'-DDE	34	< 34 U
3-19-0	2,4'-DDD	34	< 34 U
27304-13-8	oxy Chlordane	34	< 34 U
5103-73-1	cis-Nonachlor	34	< 34 U
39765-80-5	trans-Nonachlor	34	< 34 U
2385-85-5	Mirex	34	< 34 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	97.0%
Tetrachlorometaxylene	81.8%

Sample ID: EW-RM06-16
SAMPLE

Lab Sample ID: IZ26C LIMS ID: 06-1117 Matrix: Sediment

Sediment

Data Release Authorized: Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 19:25 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 18.1 g-dry-wt

Final Extract Volume: 5.0 mL
Dilution Factor: 1.00
Silica Gel: Yes

pH: 6.9 Percent Moisture: 28.4%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.4	< 1.4 U
319-85-7	beta-BHC	1.4	< 1.4 U
319-86-8	delta-BHC	1.4	< 1.4 U
58-89-9	gamma-BHC (Lindane)	1.4	< 1.4 U
76-44-8	Heptachlor	1.4	< 1.4 U
309-00-2	Aldrin	1.4	< 1.4 U
1024-57-3	Heptachlor Epoxide	4.6	< 4.6 Y
959-98-8	Endosulfan I	1.4	< 1.4 U
60-57-1	Dieldrin	6.5	< 6.5 Y
72-55-9	4,4'-DDE	2.8	< 2.8 U
72-20-8	Endrin	7.5	< 7.5 Y
33213-65-9	Endosulfan II	2.8	< 2.8 U
72-54-8	4,4'-DDD	2.8	< 2.8 U
1031-07-8	Endosulfan Sulfate	6.7	< 6.7 Y
50-29-3	4,4'-DDT	21	< 21 Y
72-43-5	Methoxychlor	14	< 14 U
53494-70-5	Endrin Ketone	2.8	< 2.8 U
7421-93-4	Endrin Aldehyde	2.8	< 2.8 U
5103-74-2	gamma Chlordane	4.3	< 4.3 Y
5103-71-9	alpha Chlordane	1.4	< 1.4 U
8001-35-2	Toxaphene	140	< 140 U
118-74-1	Hexachlorobenzene	1.4	< 1.4 U
87-68-3	Hexachlorobutadiene	1.4	< 1.4 U
789-02-6	2,4'-DDT	2.8	< 2.8 U
3424-82-6	2,4'-DDE	2.8	< 2.8 U
53-19-0	2,4'-DDD	2.8	< 2.8 U
27304-13-8	oxy Chlordane	2.8	< 2.8 U
5103-73-1	cis-Nonachlor	2.8	< 2.8 U
39765-80-5	trans-Nonachlor	2.8	< 2.8 U
2385-85-5	Mirex	2.8	< 2.8 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	59.5%
Tetrachlorometaxylene	48.8%

Sample ID: EW-RM06-101 SAMPLE

Lab Sample ID: IZ26D LIMS ID: 06-1118

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 19:50 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 9.13 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes pH: 6.8

Percent Moisture: 27.1%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	2.7	< 2.7 U
319-85-7	beta-BHC	2.7	< 2.7 U
319-86-8	delta-BHC	2.7	< 2.7 U
58-89-9	gamma-BHC (Lindane)	2.7	< 2.7 U
76-44-8	Heptachlor	2.7	< 2.7 U
309-00-2	Aldrin	2.7	< 2.7 U
1024-57-3	Heptachlor Epoxide	6.7	< 6.7 Y
959-98-8	Endosulfan I	2.7	< 2.7 U
60-57-1	Dieldrin	11	< 11 Y
72-55-9	4,4'-DDE	5.5	< 5.5 U
72-20-8	Endrin	10	< 10 Y
33213-65-9	Endosulfan II	5.5	< 5.5 U
72-54-8	4,4'-DDD	5.5	< 5.5 U
1031-07-8	Endosulfan Sulfate	12	< 12 Y
50-29-3	4,4'-DDT	38	< 38 Y
72-43-5	Methoxychlor	27	< 27 U
53494-70-5	Endrin Ketone	5.5	< 5.5 U
7421-93-4	Endrin Aldehyde	5.5	< 5.5 U
5103-74-2	gamma Chlordane	6.4	< 6.4 Y
5103-71-9	alpha Chlordane	2.7	< 2.7 U
8001-35-2	Toxaphene	270	< 270 U
118-74-1	Hexachlorobenzene	2.7	< 2.7 U
87-68-3	Hexachlorobutadiene	2.7	< 2.7 U
789-02-6	2,4'-DDT	5.5	< 5.5 Ŭ
3424-82-6	2,4'-DDE	5.5	< 5.5 U
53-19-0	2,4'-DDD	5.5	< 5.5 U
27304-13-8	oxy Chlordane	5.5	< 5.5 U
5103-73-1	cis-Nonachlor	5.5	< 5.5 U
39765-80-5		5.5	< 5.5 U
2385-85-5	Mirex	5.5	< 5.5 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	104%
Tetrachlorometaxylene	84.5%

Page 1 of 1

Sample ID: EW-RM06-18
SAMPLE

Lab Sample ID: IZ26L LIMS ID: 06-1126 Matrix: Sediment

Data Release Authorized:

Date Extracted: 02/06/06
Date Analyzed: 02/09/06 01:55

Reported: 02/15/06

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 ed: 01/12/06

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes pH: 7.2

Percent Moisture: 7.4%

Instrument/Analyst: ECD4/YZ
GPC Cleanup: No
Sulfur Cleanup: Yes
Florisil Cleanup: No

Acid Cleanup: No

CAS Number Analyte RLResult 319-84-6 alpha-BHC 0.99 < 0.99 U 319-85-7 beta-BHC 0.99 < 0.99 U 319-86-8 delta-BHC 0.99 < 0.99 U 58-89-9 gamma-BHC (Lindane) 0.99 < 0.99 U 76-44-8 Heptachlor 0.99 < 0.99 U 309-00-2 Aldrin 0.99 < 0.99 U 1024-57-3 Heptachlor Epoxide 0.99 < 0.99 U 959-98-8 Endosulfan I 0.99 < 0.99 U 60-57-1 Dieldrin 2.0 < 2.0 U 72-55-9 4,4'-DDE 2.0 < 2.0 U 72-20-8 Endrin 2.0 < 2.0 U 33213-65-9 Endosulfan II 2.0 < 2.0 U 4,4'-DDD 2.0 < 2.0 U 72-54-8 1031-07-8 Endosulfan Sulfate 2.0 < 2.0 U 50-29-3 4,4'-DDT 2.0 < 2.0 U 72-43-5 Methoxychlor 9.9 < 9.9 U 53494-70-5 Endrin Ketone 2.0 < 2.0 U Endrin Aldehyde 2.0 < 2.0 U 7421-93-4 5103-74-2 gamma Chlordane 0.99 < 0.99 U alpha Chlordane 0.99 < 0.99 U 5103-71-9 Toxaphene 99 < 99 U 8001-35-2 118-74-1 Hexachlorobenzene 0.99 < 0.99 U 87-68-3 Hexachlorobutadiene 0.99 < 0.99 U 789-02-6 2,4'-DDT 2.0 < 2.0 U 3424-82-6 2,4'-DDE 2.0 < 2.0 U 2,4'-DDD 2.0 < 2.0 U 53-19-0 27304-13-8 oxy Chlordane 2.0 < 2.0 U 5103-73-1 cis-Nonachlor 2.0 < 2.0 U 39765-80-5 trans-Nonachlor 2.0 < 2.0 U 2385-85-5 < 2.0 U Mirex 2.0

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	96.2%
Tetrachlorometaxylene	85.0%

Sample ID: EW-RM06-19 SAMPLE

Lab Sample ID: IZ26U LIMS ID: 06-1135

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Sediment

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

Date Received: 01/25/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 05:10 Instrument/Analyst: ECD4/YZ

Sample Amount: 25.9 g-dry-wt Final Extract Volume: 5.0 mL

GPC Cleanup: No Sulfur Cleanup: Yes Dilution Factor: 1.00 Silica Gel: Yes

Florisil Cleanup: No

pH: 6.8 Percent Moisture: 29.5%

Acid Cleanup: No

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.97	< 0.97 U
319-85-7	beta-BHC	0.97	< 0.97 U
319-86-8	delta-BHC	0.97	< 0.97 U
58-89-9	gamma-BHC (Lindane)	0.97	< 0.97 U
76-44-8	Heptachlor	0.97	< 0.97 U
309-00-2	Aldrin	0.97	< 0.97 U
1024-57-3	Heptachlor Epoxide	3.7	< 3.6 Y
959-98-8	Endosulfan I	0.97	< 0.97 U
60-57-1	Dieldrin	5.2	< 5.2 Y
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-20-8	Endrin	5.2	< 5.2 Y
33213-65-9	Endosulfan II	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
1031-07-8	Endosulfan Sulfate	6.6	< 6.6 Y
50-29-3	4,4'-DDT	18	< 18 Y
72-43-5	Methoxychlor	9.7	< 9.7 U
53494-70-5	Endrin Ketone	1.9	< 1.9 U
7421-93-4	Endrin Aldehyde	1.9	< 1.9 U
5103-74-2	gamma Chlordane	4.3	< 4.4 Y
5103-71-9	alpha Chlordane	0.97	< 0.97 Ŭ
8001-35-2	Toxaphene	97	< 97 U
118-74-1	Hexachlorobenzene	0.97	< 0.97 U
87-68-3	Hexachlorobutadiene	0.97	< 0.97 U
789-02-6	2,4'-DDT	1.9	< 1.9 U
3424-82-6	2,4'-DDE	1.9	< 1.9 U
53-19-0	2,4'-DDD	1.9	< 1.9 U
27304-13-8	oxy Chlordane	1.9	< 1.9 U
5103-73-1	cis-Nonachlor	1.9	< 1.9 U
39765-80-5		1.9	< 1.9 U
2385-85-5	Mirex	1.9	< 1.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	125%
Tetrachlorometaxylene	89.2%

1 of 1 Page

Sample ID: EW-RM06-20 SAMPLE

Lab Sample ID: IZ26K LIMS ID: 06-1125

Matrix: Sediment Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/09/06 01:31 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29 Date Sampled: 01/12/06

Date Received: 01/25/06

Sample Amount: 26.1 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 7.0

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.96	< 0.96 U
319-85-7	beta-BHC	0.96	< 0.96 U
319-86-8	delta-BHC	0.96	< 0.96 U
58-89-9	gamma-BHC (Lindane)	0.96	< 0.96 Ŭ
76-44-8	Heptachlor	0.96	< 0.96 U
309-00-2	Aldrin	0.96	< 0.96 Ü
1024-57-3	Heptachlor Epoxide	0.96	< 0.96 U
959-98-8	Endosulfan I	0.96	< 0.96 U
60-57-1	Dieldrin	1.9	< 1.9 U
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-20-8	Endrin	1.9	< 1.9 U
33213-65-9	Endosulfan II	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
1031-07-8	Endosulfan Sulfate	1.9	< 1.9 U
50-29-3	4,4'-DDT	1.9	< 1.9 U
72-43-5	Methoxychlor	9.6	< 9.6 U
53494-70-5	Endrin Ketone	1.9	< 1.9 U
7421-93-4	Endrin Aldehyde	1.9	< 1.9 U
5103-74-2	gamma Chlordane	0.96	< 0.96 U
5103-71-9	alpha Chlordane	0.96	< 0.96 U
8001-35-2	Toxaphene	96	< 96 U
118-74-1	Hexachlorobenzene	0.96	< 0.96 U
87-68-3	Hexachlorobutadiene	0.96	< 0.96 U
789-02-6	2,4'-DDT	1.9	< 1.9 U
3424-82-6	2,4'-DDE	1.9	< 1.9 U
53-19-0	2,4'-DDD	1.9	< 1.9 U
27304-13-8	oxy Chlordane	1.9	< 1.9 U
5103-73-1	cis-Nonachlor	1.9	< 1.9 U
39765-80-5	trans-Nonachlor	1.9	< 1.9 U
2385-85-5	Mirex	1.9	< 1.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	87.5%
Tetrachlorometaxylene	78.8%

Page 1 of 1

Sample ID: EW-RM06-21 SAMPLE

Lab Sample ID: IZ26V LIMS ID: 06-1136 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06

Date Analyzed: 02/09/06 07:12 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Sample Amount: 5.48 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

pH: 6.7

Percent Moisture: 26.9%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	4.6	< 4.6 U
319-85-7	beta-BHC	4.6	< 4.6 U
319-86-8	delta-BHC	4.6	< 4.6 U
58-89-9	gamma-BHC (Lindane)	4.6	< 4.6 U
76-44-8	Heptachlor	4.6	< 4.6 U
309-00-2	Aldrin	4.6	< 4.6 U
1024-57-3	Heptachlor Epoxide	4.6	< 4.6 U
959-98-8	Endosulfan I	4.6	< 4.6 U
60-57-1	Dieldrin	9.1	< 9.1 U
72-55-9	4,4'-DDE	9.1	< 9.1 U
72-20-8	Endrin	9.1	< 9.1 U
33213-65-9	Endosulfan II	9.1	< 9.1 U
72-54-8	4,4'-DDD	9.1	< 9.1 U
1031-07-8	Endosulfan Sulfate	9.1	< 9.1 U
50-29-3	4,4'-DDT	15	< 15 Y
72-43-5	Methoxychlor	46	< 46 U
53494-70-5	Endrin Ketone	9.1	< 9.1 U
7421-93-4	Endrin Aldehyde	9.1	< 9.1 U
5103-74-2	gamma Chlordane	4.6	< 4.6 U
5103-71-9	alpha Chlordane	4.6	< 4.6 U
8001-35-2	Toxaphene	460	< 460 U
118-74-1	Hexachlorobenzene	4.6	< 4.6 U
87-68-3	Hexachlorobutadiene	4.6	< 4.6 U
789-02-6	2,4'-DDT	9.1	< 9.1 U
3424-82-6	2,4'-DDE	9.1	< 9.1 U
53-19-0	2,4'-DDD	9.1	< 9.1 U
27304-13-8	oxy Chlordane	9.1	< 9.1 U
5103-73-1	cis-Nonachlor	9.1	< 9.1 U
39765-80-5	trans-Nonachlor	9.1	< 9.1 U
2385-85-5	Mirex	9.1	< 9.1 U

Reported in μ g/kg (ppb)

Decachlorobiphenyl	100%
Tetrachlorometaxylene	89.8%

Page 1 of 1

Lab Sample ID: IZ26J LIMS ID: 06-1124 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 23:05 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

Sample ID: EW-RM06-23 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes pH: 7.2

Percent Moisture: 26.4%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.99	< 0.99 U
319-85-7	beta-BHC	0.99	< 0.99 U
319-86-8	delta-BHC	0.99	< 0.99 U
58-89-9	gamma-BHC (Lindane)	0.99	< 0.99 U
76-44-8	Heptachlor	0.99	< 0.99 U
309-00-2	Aldrin	0.99	< 0.99 U
1024-57-3	Heptachlor Epoxide	0.99	< 0.99 U
959-98-8	Endosulfan I	0.99	< 0.99 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	7.0	< 7.0 Y
72-43-5	Methoxychlor	9.9	< 9.9 Ŭ
53494-70-5	Endrin Ketone	2.0	< 2.0 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.99	< 0.99 Ŭ
5103-71-9	alpha Chlordane	0.99	< 0.99 Ŭ
8001-35-2	Toxaphene	99	< 99 U
118-74-1	Hexachlorobenzene	0.99	< 0.99 U
87-68-3	Hexachlorobutadiene	0.99	< 0.99 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U
27304-13-8	oxy Chlordane	2.0	< 2.0 U
5103-73-1	cis-Nonachlor	2.0	< 2.0 U
39765-80-5	trans-Nonachlor	2.0	< 2.0 U
2385-85-5	Mirex	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	62.2%

Page 1 of 1

Lab Sample ID: IZ26E LIMS ID: 06-1119

Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 20:14 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

Sample ID: EW-RM06-24 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 1.71 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

pH: 7.3

Percent Moisture: 32.0%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	15	< 15 U
319-85-7	beta-BHC	15	< 15 U
319-86-8	delta-BHC	15	< 15 U
58-89-9	gamma-BHC (Lindane)	15	< 15 U
76-44-8	Heptachlor	15	< 15 U
309-00-2	Aldrin	15	< 15 U
1024-57-3	Heptachlor Epoxide	15	< 15 U
959-98-8	Endosulfan I	15	< 15 U
60-57-1	Dieldrin	29	< 29 U
72-55-9	4,4'-DDE	29	< 29 U
72-20-8	Endrin	29	< 29 U
33213-65-9	Endosulfan II	29	< 29 U
72-54-8	4,4'-DDD	29	< 29 U
1031-07-8	Endosulfan Sulfate	29	< 29 U
50-29-3	4,4'-DDT	29	< 29 U
72-43-5	Methoxychlor	150	< 150 U
53494-70-5	Endrin Ketone	29	< 29 U
7421-93-4	Endrin Aldehyde	29	< 29 U
5103-74-2	gamma Chlordane	15	< 15 U
5103-71-9	alpha Chlordane	15	< 15 U
3001-35-2	Toxaphene	1,500	< 1,500 U
118-74-1	Hexachlorobenzene	15	< 15 U
37-68-3	Hexachlorobutadiene	15	< 15 U
789-02-6	2,4'-DDT	29	< 29 U
3424-82-6	2,4'-DDE	29	< 29 U
53-19-0	2,4'-DDD	29	< 29 U
27304-13-8	oxy Chlordane	29	< 29 U
5103-73-1	cis-Nonachlor	29	< 29 U
39765-80-5	trans-Nonachlor	29	< 29 U
2385-85-5	Mirex	29	< 29 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	99.0%
Tetrachlorometaxylene	78.8%

Page 1 of 1

Sample ID: EW-RM06-25 SAMPLE

Lab Sample ID: IZ26F LIMS ID: 06-1120 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 21:27 Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Acid Cleanup: No

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 7.34 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

pH: 6.9 Percent Moisture: 41.4%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	3.4	< 3.4 U
319-85-7	beta-BHC	3.4	< 3.4 U
319-86-8	delta-BHC	3.4	< 3.4 U
58-89-9	gamma-BHC (Lindane)	3.4	< 3.4 U
76-44-8	Heptachlor	3.4	< 3.4 U
309-00-2	Aldrin	3.4	< 3.4 U
1024-57-3	Heptachlor Epoxide	14	< 14 Y
959-98-8	Endosulfan I	3.4	< 3.4 U
60-57-1	Dieldrin	11	< 11 Y
72-55-9	4,4'-DDE	6.8	< 6.8 U
72-20-8	Endrin	10	< 10 Y
33213-65-9	Endosulfan II	6.8	< 6.8 U
72-54-8	4,4'-DDD	6.8	< 6.8 U
1031-07-8	Endosulfan Sulfate	12	< 12 Y
50-29-3	4,4'-DDT	42	< 42 Y
72-43-5	Methoxychlor	34	< 34 U
53494-70-5	Endrin Ketone	6.8	< 6.8 U
7421-93-4	Endrin Aldehyde	6.8	< 6.8 U
5103-74-2	gamma Chlordane	8.8	< 8.8 Y
5103-71-9	alpha Chlordane	3.4	< 3.4 U
8001-35-2	Toxaphene	340	< 340 U
118-74-1	Hexachlorobenzene	3.4	< 3.4 U
87-68-3	Hexachlorobutadiene	3.4	< 3.4 U
789-02-6	2,4'-DDT	6.8	< 6.8 U
3424-82-6	2,4'-DDE	6.8	< 6.8 U
53-19-0	2,4'-DDD	6.8	< 6.8 U
27304-13-8	oxy Chlordane	6.8	< 6.8 U
5103-73-1	cis-Nonachlor	6.8	< 6.8 U
39765-80-5	trans-Nonachlor	6.8	< 6.8 U
2385-85-5	Mirex	6.8	< 6.8 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	100%
Tetrachlorometaxylene	75.2%

Page 1 of 1

Sample ID: EW-RM06-26 SAMPLE

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

pH: 7.2

Percent Moisture: 15.3%

LIMS ID: 06-1123 Matrix: Sediment Data Release Authorized:

Reported: 02/15/06

Lab Sample ID: IZ26I

Date Extracted: 02/06/06 Date Analyzed: 02/08/06 22:40 Instrument/Analyst: ECD4/YZ GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 U
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98-8	Endosulfan I	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 U
53494-70-5	Endrin Ketone	2.0	< 2.0 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 U
5103-71-9	alpha Chlordane	0.98	< 0.98 Ŭ
8001-35-2	Toxaphene	98	< 98 U
118-74-1	Hexachlorobenzene	0.98	< 0.98 U
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U
27304-13-8	oxy Chlordane	2.0	< 2.0 U
5103-73-1	cis-Nonachlor	2.0	< 2.0 U
39765-80-5		2.0	< 2.0 Ŭ
2385-85-5	Mirex	2.0	< 2.0 Ŭ

Reported in $\mu g/kg$ (ppb)

	_
Decachlorobiphenyl	96.0%
Tetrachlorometaxylene	75.8%

Page 1 of 1

Sample ID: EW-RM06-28 SAMPLE

Lab Sample ID: IZ26H LIMS ID: 06-1122 Matrix: Sediment

Data Release Authorized:

Reported: 02/15/06

Date Extracted: 02/06/06
Date Analyzed: 02/08/06 22:16
Instrument/Analyst: ECD4/YZ

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

05-08-09-29
Date Sampled: 01/12/06
Date Received: 01/25/06

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

pH: 7.0 Percent Moisture: 17.5%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 Ŭ
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98-8	Endosulfan I	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	3.8	< 3.8 Y
50-29-3	4,4'-DDT	11	< 11 Y
72-43-5	Methoxychlor	9.8	< 9.8 U
53494-70-5	Endrin Ketone	2.0	< 2.0 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	1.6	< 1.6 Y
5103-71-9	alpha Chlordane	0.98	< 0.98 U
8001-35-2	Toxaphene	98	< 98 U
118-74-1	Hexachlorobenzene	0.98	< 0.98 U
87-68-3	Hexachlorobutadiene	0.98	< 0.98 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U
27304-13-8	oxy Chlordane	2.0	< 2.0 U
5103-73-1	cis-Nonachlor	2.0	< 2.0 U
39765-80-5	trans-Nonachlor	2.0	< 2.0 U
2385-85-5	Mirex	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	104%
Tetrachlorometaxylene	89.2%

ORGANICS ANALYSIS DATA SHEET Pesticides by GC/ECD Method SW8081A 1 of 1

Sample ID: EW-RM06-3-RB

SAMPLE

< 0.10 U

< 0.10 U

0.10

0.10

Lab Sample ID: IZ26M LIMS ID: 06-1127

QC Report No: IZ26-Windward Environmental Project: East Waterway Recontam. Mon.

Matrix: Water

05-08-09-29 Date Sampled: 01/24/06

Data Release Authorized: Reported: 02/15/06

39765-80-5

2385-85-5

Date Received: 01/25/06

Date Extracted: 01/31/06

Sample Amount: 500 mL Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Date Analyzed: 02/07/06 18:52 Instrument/Analyst: ECD4ECD4/YZYZ

pH: 7.0

GPC Cleanup: No Sulfur Cleanup: Yes

Florisil Cleanup: No Silica Gel: No

CAS Number Analyte RLResult 319-84-6 alpha-BHC 0.050 < 0.050 U 319-85-7 beta-BHC 0.050 < 0.050 U 319-86-8 delta-BHC 0.050 < 0.050 U gamma-BHC (Lindane) 58-89-9 0.050 < 0.050 U 76-44-8 Heptachlor 0.050 < 0.050 U 0.050 309-00-2 Aldrin < 0.050 U 1024-57-3 Heptachlor Epoxide 0.050 < 0.050 U 959-98-8 Endosulfan I 0.050 < 0.050 U 60-57-1 Dieldrin 0.10 < 0.10 U 72-55-9 4,4'-DDE 0.10 < 0.10 U 72-20-8 Endrin 0.10 < 0.10 U Endosulfan II 33213-65-9 0.10 < 0.10 U 72-54-8 4,4'-DDD 0.10 < 0.10 U Endosulfan Sulfate 1031-07-8 0.10 < 0.10 U 4,4'-DDT 50-29-3 0.10 < 0.10 U 72-43-5 Methoxychlor 0.50 < 0.50 U 53494-70-5 Endrin Ketone 0.10 < 0.10 U 7421-93-4 Endrin Aldehyde 0.10 < 0.10 U 5103-74-2 gamma Chlordane 0.050 < 0.050 U alpha Chlordane 0.050 5103-71-9 < 0.050 U Toxaphene 8001-35-2 5.0 < 5.0 U 118-74-1 Hexachlorobenzene 0.050 < 0.050 U Hexachlorobutadiene 87-68-3 0.050 < 0.050 U 2,4'-DDT 789-02-6 0.10 < 0.10 U 3424-82-6 2,4'-DDE 0.10 < 0.10 U 53-19-0 2,4'-DDD 0.10 < 0.10 U 27304-13-8 oxy Chlordane 0.10 < 0.10 U cis-Nonachlor 5103*-*73*-*1 0.10 < 0.10 U

Reported in μ g/L (ppb)

trans-Nonachlor

Mirex

Decachlorobiphenyl	53.8%
Tetrachlorometaxylene	83.2%

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse, Sand	Medium Sand	Fine Sand	Very Fine Sand		S	ilt		Cl	lay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
EW-RMO6-24	100.0	100.0	96.1	88.6	74.7	57.8	46.4	37.5	28.9	21.6	15.9	11.3	7.7	5.2
EW-RM06-24	100.0	100.0	96.1	89.0	75.3	58.6	46.8	37.9	29.5	22.0	15.6	11.1	7.6	5.1
EW-RMO6-24	100.0	100.0	95.9	88.2	74.4	57.7	46.3	37.5	30.5	22.1	15.3	11.0	7.4	5.1
EW-RMO6-01	100.0	100.0	99.9	98.3	95.7	84.2	53.8	35.5	25.3	17.3	12.0	8.7	6.2	4.3
EW-RMO6-02	100.0	99.8	72.6	49.0	27.9	16.1	10.9	7.9	6.3	4.7	3.5	2.6	1.7	1.2
EW-RM06-16	100.0	94.7	86.1	72.1	53.5	35.0	25.2	18.8	15.3	11.4	8.1	5.8	4.0	2.8
EW-RMO6-101	100.0	93.1	85.4	73.0	54.8	36.8	27.6	21.5	15.4	11.3	8.4	5.9	4.1	2.8
EW-RM06-25	100.0	100.0	99.4	98.4	96.4	91.3	80.0	61.8	46.9	33.7	23.8	16.9	11.5	7.8
EW-RMO6-15	100.0	58.3	54.8	51.1	46.4	40.1	31.8	25.7	22.6	14.2	8.6	6.4	4.6	3.2
EW-RMO6-28	100.0	99.4	84.1	63.7	37.0	16.9	11.2	8.6	7.0	5.3	4.1	3.1	2,1	1.5
EW-RMO6-26	100.0	99.6	72.6	40.7	13.9	5.3	4.4	4.0	3.6	3.0	2.3	1.7	1.1	0.8
EW-RMO6-23	100.0	99.2	80.4	62.6	49.3	43.1	41.9	39.8	33.4	25.3	19.1	14.1	9.7	6.9
EW-RMO6-20	100.0	99.7	69.1	40.6	13.6	4.4	3.4	3.1	2.8	2.4	2.0	1.6	1.1	0.9
EW-RMO6-3	100.0	99.8	78.5	47.2	20.1	7.4	4.9	4.0	4.0	3.5	2.9	2.3	1.7	1.3
EW-RMO6-4	100.0	100.0	99.9	99.4	93.5	67.6	37.7	24.2	18.3	14.3	10.9	8.1	6.1	4.4
EW-RMO6-18	100.0	99.8	64.4	26.7	4.4	0.4	0.2	0.2	NA	NA	NA	NA	NA	NA

Notes to the Testing:

IZ26

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
EW-RMO6-24	3.9	7.4	13.9	16.9	11.4	9.0	8.6	7.3	5.7	4.5	3.6	2.5	5.2
EW-RMO6-24	3.9	7.2	13.6	16.7	11.8	8.9	8.4	7.5	6.4	4.5	3.5	2.5	5.1
EW-RMO6-24	4.1	7.8	13.8	16.7	11.4	8.8	7.1	8.4	6.8	4.4	3.5	2.3	5.1
EW-RMO6-01	0.1	1.6	2.6	11.5	30.4	18.4	10.1	8.1	5.3	3.3	2.5	1.9	4.3
EW-RMO6-02	27.4	23.6	21.0	11.8	5.2	3.0	1.6	1.5	1.2	0.9	0.8	0.5	1.2
EW-RMO6-16	13.9	14.0	18.6	18.5	9.8	6.3	3.6	3.9	3.3	2.3	1.8	1.2	2.8
EW-RMO6-101	14.6	12.4	18.3	18.0	9.1	6.2	6.0	4.1	2.9	2.5	1.8	1.2	2.8
EW-RM06-25	0.6	1.0	2.0	5.1	11.2	18.3	14.9	13.1	9.9	6.9	5.4	3.7	7.8
EW-RMO6-15	45.2	3.7	4.7	6.3	8.3	6.1	3.1	8.4	5.6	2.2	1.8	1.3	3.2
EW-RMO6-28	15.9	20.4	26.7	20.1	5.7	2.6	1.7	1.6	1.2	1.0	1.0	0.6	1.5
EW-RMO6-26	27.4	31.9	26.8	8.6	0.9	0.4	0.4	0.6	0.7	0.6	0.6	0.2	0.8
EW-RMO6-23	19.6	17.8	13.3	6.2	1.2	2.1	6.5	8.1	6.2	5.0	4.4	2.8	6.9
EW-RMO6-20	30.9	28.5	27.0	9.2	1.0	0.3	0.2	0.5	0.4	0.4	0.4	0.2	0.9
EW-RMO6-3	21.5	31.3	27.1	12.6	2.6	0.8	0.0	0.6	0.5	0.6	0.6	0.4	1.3
EW-RMO6-4	0.1	0.6	5.9	25.9	29.9	13.5	6.0	3.9	3.4	2.8	2.1	1.6	4.4
EW-RMO6-18	35.6	37.6	22.3	4.1	0.2	0.0	NA	NA	NA	NA	NA	NA	NA

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	ilt		CI	lay
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
EW-RM06-5	100.0	100.0	97.5	90.3	73.3	50.7	29.7	19.4	14.4	10.6	7.8	5.8	4.1	3.0
EW-RM06-5	100.0	100.0	98.4	91.2	73.7	50.4	30.0	19.6	14.3	10.4	7.8	5.7	4.2	2.8
EW-RM06-5	100.0	100.0	96.8	90.0	73.2	50.2	30.0	19.5	14.2	10.3	7.8	5.7	4.2	2.8
EW-RM06-6	100.0	99.5	90.1	77.1	57.6	41.5	30.2	21.9	17.2	12.5	9.0	6.7	4.7	3.1
EW-RM06-7	100.0	100.0	98.8	94.6	82.5	59.2	33.5	22.5	17.6	12.7	9.6	6.9	4.8	2.9
EW-RM06-8	100.0	100.0	81.2	58.3	30.1	10.6	5.8	4.8	4.3	3.6	2.8	2.1	1.5	1.0
EW-RM06-10	100.0	100.0	97.0	91.7	78.2	56.4	38.6	27.2	20.6	15.3	11.2	8.0	5.6	3.7
EW-RM06-19	100.0	53.0	47.5	40.0	29.6	20.1	15.6	12.6	11.6	9.1	6.6	4.7	3.2	2.2
EW-RM06-21	100.0	100.0	80.3	64.0	47.1	34.6	26.8	20.1	15.5	11.9	8.3	6.0	4.3	2.8

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
EW-RM06-5	2.5	7.2	17.0	22.6	20.9	10.3	5.0	3.9	2.8	2.0	1.7	1.1	3.0
EW-RM06-5	1.6	7.1	17.5	23.3	20.4	10.4	5.3	3.9	2.6	2.1	1.5	1.5	2.8
EW-RM06-5	3.2	6.8	16.8	23.1	20.2	10.5	5.3	3.9	2.5	2.1	1.5	1.3	2.8
EW-RM06-6	9.9	13.0	19.5	16.2	11.3	8.3	4.6	4.7	3.6	2.2	2.0	1.7	3.1
EW-RM06-7	1.2	4.2	12.1	23.4	25.7	11.0	5.0	4.8	3.2	2.6	2.2	1.8	2.9
EW-RM06-8	18.8	22.9	28.2	19.5	4.8	1.0	0.5	0.7	0.8	0.7	0.6	0.4	1.0
EW-RM06-10	3.0	5.3	13.5	21.8	17.8	11.5	6.6	5.3	4.1	3.2	2.4	1.9	3.7
EW-RM06-19	52.5	7.5	10.4	9.6	4.5	3.0	1.0	2.5	2.5	1.9	1.5	1.0	2.2
EW-RM06-21	19.7	16.4	16.8	12.5	7.9	6.7	4.6	3.6	3.6	2.3	1.7	1.5	2.8

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-01 ARI ID: 06-1115 IZ26A

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	66.70
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	1.36

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-02 ARI ID: 06-1116 IZ26B

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	83.80
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	0.863
RL Analytical reporti	ng limit				

Undetected at reported detection limit U

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-3 ARI ID: 06-1128 IZ26N

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	85.30
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	0.679
RL Analytical reporting	ng limit				

Analytical reporting limit

Ū Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized: Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-4 ARI ID: 06-1129 IZ260

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	68.10
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.54

RLAnalytical reporting limit

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29
Date Sampled: 01/24/06
Date Received: 01/25/06

Client ID: EW-RM06-5 ARI ID: 06-1130 IZ26P

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	69.90
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.31

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon. Event: 05-08-09-29 Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-6 ARI ID: 06-1131 IZ26Q

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	71.00
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.32
RL Analytical reporting Undetected at report		ı limit		•	

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-7 ARI ID: 06-1132 IZ26R

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	67.40
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.30

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-8 ARI ID: 06-1133 IZ26S

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	83.60
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	0.880

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon.
Event: 05-08-09-29
Date Sampled: 01/24/06
Date Received: 01/25/06

Client ID: EW-RM06-10 ARI ID: 06-1134 IZ26T

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	66.10
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	0.876

RLAnalytical reporting limit U

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06
Date Received: 01/25/06

Client ID: EW-RM06-15 ARI ID: 06-1121 IZ26G

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	58.30
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	2.30

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-16 ARI ID: 06-1117 IZ26C

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	71.40
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	1.44
DI Amalastical compasti	7.1.1.				

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-101 ARI ID: 06-1118 IZ26D

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	70.90
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.70
DT Analysiss and somewhile	144-				

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized Reported: 01/30/06

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-18 ARI ID: 06-1126 IZ26L

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	93.60
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	0.567

RLAnalytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-19 ARI ID: 06-1135 IZ26U

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	65.10
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.60

RLAnalytical reporting limit U

Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-20 ARI ID: 06-1125 IZ26K

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	88.20
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	0.351

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29 Date Sampled: 01/24/06 Date Received: 01/25/06

Client ID: EW-RM06-21 ARI ID: 06-1136 IZ26V

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	70.00
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.66
RL Analytical reportin U Undetected at report	_	n limit			

SAMPLE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-23 ARI ID: 06-1124 IZ26J

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	73.20
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	1.33
RL Analytical reporting	ng limit				

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-24 ARI ID: 06-1119 IZ26E

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	66.00
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.39

RLAnalytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized (1)

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-25 ARI ID: 06-1120 IZ26F

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	57.60
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	1.34
RL Analytical reporting	ng limit				

Undetected at reported detection limit U

SAMPLE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06
Date Received: 01/25/06

Client ID: EW-RM06-26 ARI ID: 06-1123 IZ26I

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	84.40
Total Organic Carbon	01/27/06 012706#1	Plumb,1981	Percent	0.020	0.500

RL Analytical reporting limit

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized:

Reported: 01/30/06

Project: East Waterway Recontam. Mon.

Event: 05-08-09-29

Date Sampled: 01/12/06 Date Received: 01/25/06

Client ID: EW-RM06-28 ARI ID: 06-1122 IZ26H

Analyte	Date	Method	Units	RL	Sample
Total Solids	01/26/06 012606#1	EPA 160.3	Percent	0.01	80.20
Total Organic Carbon	01/27/06 012706#1	Plumb, 1981	Percent	0.020	1.16

RL Analytical reporting limit

U Undetected at reported detection limit

REPLICATE RESULTS-CONVENTIONALS IZ26-Windward Environmental

Matrix: Sediment

Data Release Authorized: Reported: 01/30/06

Project: East Waterway Recontam. Mon. Event: 05-08-09-29 Date Sampled: 01/12/06 Date Received: 01/25/06

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: IZ26E Client II	D: EW-RM06-24				
Total Solids	01/26/06	Percent	66.00	66.10 66.50	0.4%
Total Organic Carbon	01/27/06	Percent	1.39	1.56 1.46	5.8%
ARI ID: IZ26U Client II	: EW-RM06-19				
Total Solids	01/26/06	Percent	65.10	64.80 65.40	0.5%
Total Organic Carbon	01/27/06	Percent	1.60	1.69 1.51	5.6%

APPENDIX E. COLLECTION FORMS AND FIELD NOTES

Wind Ward ward environmental LLC

SURFACE SEDIMENT COLLECTION FORM

Project Name:	EW Recontamination Monitoring 2006	Project no.:	05-08-09-29
Date:	1/12/06	Weather:	cool, emme overcast, calm
Sampling Method:	0.1 m² van Veen grab	Crew:	T Do, S Pierce, A Redriquez, E Duffield, K Harley

GRAB DATA	Location ID: EW	-RM- D/		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
0909	19.5		N	-didn't bire
0913	19.6	15	У	
SAMPLE DATA	Sample ID: EW-l	RM06- 0 /		
Sediment type (%) cobble gravel	Sediment color brown surface drab olive	Sediment odor	H₂S petroleum	Comments: (i.e. figanic matter most debris Shell fragments sheen, fauna, field duplicate, rinsate blank, etc.)
Sand DICO trace	1	moderate	other:	worm
EID 2107.	gray black	strong		

Latitude:	Location ID: EW-	Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
0930	19.3.4445 51	/5	У	
SAMPLE DATA	Sample ID: EW-I	RM06- 02		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface	one	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel 5%	drab olive	slight	petroleum	plant delvis
sano (CM C)	brown	moderate	other:	
sill 570	gray	strong	4.	
clay	black			

* 10045 like cap material . 959.

environmental LL

Project Name:	EW Recontamination	Monitoring 2006 P	roject no.: <u>05-08-</u> (09-29	
Date:	1/12/06		Weather cool, light rain		
Sampling Method:	0.1 m² van Veen gral	<u> </u>		Pierce, A Rodrique z, E Duffield, K Hurle y	
	A 70.0 ()		-		
GRAB DATA	Location ID: EW	-RM-16 and	EW-RW	-101 (duplicate)	
Latitude:		Longitude:			
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:	
0947	19.2	14	4	· .	
SAMPLE DATA	Sample ID: EW-I	 RM06-		<u> </u>	
Sediment type (%		Sediment odor		Comments: (i.e. organic matter wood	
cobble	brown surface	none	H₂S	debris, shell fragments, sheep, fauna, field	
gravel 40%	drab olive	slight	petroleum	in the second	
Sam (1) (1)-20°	20 brown	moderate	other:	Man 13h	
(Silt) - trace	(gray)	strong			
clay	black				
* 8 cm	DOB SILTY DING	sand in top	sot cap (c	carse sand) material	
GRAB DATA	Location ID: EW-	-RM- 24			
Latitude:		Longitude:			
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:	
1000	19.0	15.5	у		
		,			
SAMPLE DATA	Sample ID: EW-F	RM06- 7//			
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e organic matter, wood	
cobble (169) des	brown surface)		HS	debris shell fragments, theen fauna, field duplicate, rinsate blank, etc.)	
/ in #5		Sligh	setroleum	duplicate, rinsate blank, etc.)	
EM DMD	brown	moderate	other:	wrms I wan	
Silt) - Gift	(gray)	strong			
clay	black			1	
The state of the s			en - 1		

Wind Ward

Project Name:	EW Recontamination Monitoring 2006	Project no.:	05-08-09-29
Date:	1/12/04	Weather:	cool, light rain
Sampling Method:	0.1 m² van Veen grab	Crew:	T Do, S Pierce, A Rodriquez, E Duffield, K-Hurley

Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1018	19.1	14	7	
			·	
SAMPLE DATA	Sample ID: EW-I	RM06- 25	-	
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. organic matter, wood
cobble	brown surface	попе	H₂S	debris shelf fragments sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	manus sembar
sand (FM C)	brown	moderate	other:	
silt) clay	(gray) black	strong		

GRAB DATA	Location ID: EW	-RM- 5		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1100	16.8	_	N	- rocks caught in jaws wash out
1104	14.3	_	N	trocks caught in taws wash air
1108	16.6		N	-rocks raught in yours-washe
SAMPLE DATA	Sample ID: EW-l	RM06- 15		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface.	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay .	black			

Win	Ward Ward

SURFACE SEDIMENT COLLECTION FORM

Project Name:	EW Recontamination Monitoring 2006	Project no.:	05-08-09-29
Date:	1/12/04	Weather:	cool, light rain
	0.1 m² van Veen grab		T Do, S Pierce, A Rodriquez, E Duffield, K Hurley

GRAB DATA	Location ID: EW	-RM- (15		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1112 超	17 m	nla	₩	-washout; rocks in Jaws
1117 45	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>	n/a	N	- washout; rocks in gaws " - ~9.8 ft hm tax; did riot triggen ~ 9.9 ft im
1122 16	17.8	NA	N	+ did riot trigan ~ 9.9 it im
SAMPLE DATA	Sample ID: EW-	RM06- 45		0.0
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. organic matter, wood
cobble	brown surface	none	-H ₂ S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	stight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray black	strong		

GRAB DATA	Location ID: EW	RM- (5		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1128	18	n/a	N	- wash out; ~ 10 lts (m. turge
1133 🚜	18.5	17	4	- 1/2 good to keep-other half
				- 1/2 good to keep-other half (
SAMPLE DATA	Sample ID: EW-I	RM06- 🔰		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface	none ((H ₂ S)	debris, shell fragments, steem fauna, field duplicate, rinsate blank, etc.)
gravel 50	drab olive	slight	petroleum	, ,
sand (FM C)	brown	moderate	other:	not makenial
silt) - i 🥠	(gray)	strong		sheen layer - multiple
clay	black	Transmiss and the second		Size Proper

* une sand tayer above gravel layer approx 3-3.50m

W	ing	Ward	L

SURFACE SEDIMENT COLLECTION FORM

Project Name: E		Monitoring 2006 P	roject no.: <u>05-08-0</u>	09-29	
Date:	1/12/06		Weather: cool, rain		
Sampling Method: 0.1 m² van Veen grab		o	Crew: T Do, S	Pierce, A Rodriquez , E Duffield, K Hurley	
			-		
GRAB DATA	Location ID: EW	-RM- 29			
Latitude:	<u> </u>	Longitude:		north	
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments: (@top) fine material septo tissentinuous fill material supto = 12cm Coarse sand)	
1442	19.5	12	У	material support discontinuous	
				a separated with = 12cm	
				(coarse sand)	
SAMPLE DATA	Sample ID: EW-	RM06- 28			
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. organic matter, wood	
cobble	brown surface	(fione)	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)	
gravel المحتورة	drab olive	slight	petroleum		
(Sand (E) M () 7076	brown	moderate	other:	wans	
(II) trace	gray	strong			
clay	black				
* bill mater	ial-courses	and			
GRAB DATA	Location ID: EW	-RM- 26			
Latitude:		Longitude:			
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:	
1456	19.6	15	ý		
SAMPLE DATA	Sample ID: EW-I	RM06- 26		Depth	
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood	
cobble	brown surface	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, finsate blank, etc.)	
gravel Hove	drab olive	slight	petroleum	malarial a currace - NOT	
Sand(BM6)#15%	brown	moderate	other:	line matrine as soul wish	
III- Hace	(gray)	strong		fine material @ surface - NOT visibility on atmal- 15 cm	
clay	black			Den Coarse sand)	

+ jul material - coarse sand

	2 7	i Wonitoring 2006 Pr	oject no.: <u>U5-U8-U</u>	9-29
Date:	1/26/06		Weather: <u>CCC</u>	rain
Sampling Method: 0.1	1 m² van Veen grat)	Crew: T Do, S	Pierce, A-Rodriquez, E Duffield, K-Hurley
			-	
GRAB DATA	Location ID: EW	-RM- 23		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1508	20	lana-	N -	- chain caught did not fire
1511	20.3	12	У]
SAMPLE DATA	Sample ID: EW-I	RM06-23	(0.040
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. grganic matter) wood
cobble	brown surface	none	H ₂ S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel (FMC) MqC76	drab olive	slight	petroleum	worms
Sand (F) M(C) 44 C	brown	moderate	other:	silt begans et zem and is descentinaino w/occa
Sill pardentine	(fray)	strong		is dehemannon where
clay Charles	black			sand to 15 cm
ئد	(COON SE SON	id = bul mas	eual	
GRAB DATA	Location ID: EW-	-RM- 20		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1524	21.8	14	У	
•				
SAMPLE DATA	Sample ID: EW-F	RM06- 20	·	
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	• • • • • • • • • • • • • • • • • • •
Sand (FMC) 475 10	brown	moderate	other:	coarse sand 0-14 cm
SID-frame	(gray	strong		
clay	black			
respect & Chan	1. c= 1 = 1 10 - 1	o a les l'		1

W	ing	Ward	-

Project Name:	EW Recontamination	Monitoring 2006 Pr	roject no.: <u>05-</u> 08-(09-29
Date:	1/12/06		Weather:	ool, rain
Sampling Method:	0.1 m² van Veen grat	0	Crew: T Do, S	Pierce, A-Rodriquez, E Duffield, K.Hurley
GRAB DATA	Location ID: EW	-RM- 10		
Latitude:	<u> </u>	Longitude:	***	
Grab time	Bottom depth (m)	Penetration depth Acceptable (cm) grab (Y/N)		Comments:
1533	19.8	13	Y	course sand = 0-13cm
	· · · · · · · · · · · · · · · · · · ·			
SAMPLE DATA	Sample ID: EW-I	RM06- /8		
Sediment type (%) cobble	Sediment color brown surface	Sediment odor	H₂S	Comments: (f.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	adplicate, illibate stating cross
-sand)(F M (5))**	brown	moderate	other:	• •
silt clay	gray black	strong		
* Cown	be sand = bi	il materiae		
GRAB DATA	Location ID: EW-			
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
SAMPLE DATA	Sample ID: EW-F	RM06-		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	, , , , , , , , , , , , , , , , , , , ,
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay	black			

Wi	nd Ward
	- City i Olimoniai

Project Name:	EW Recontamination	Monitoring 2006 Pro	oject no.: <u>05-08-0</u> 9	9-29
Date:	1/24/06		Weather: Sunni	1 , Cool
Sampling Method:	0.1 m² van Veen grat			Pierce, A Rodriquez, E Duffield, K. Hurley
		-	-	
GRAB DATA	Location ID: EW	-RM- 3		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1321	19.1	15	Y	
SAMPLE DATA	Sample ID: EW-J	RM06- 3		
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. organic matter, wood
cobble	brown surface	none (H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	Slight	petroleum	0-13cm cap layer
sand PMO 95%	brown	moderate	other:	0-13cm cap layer 13-15 fine sand & silt
silt Trace 45%	gray	strong		
clay	black		· ·	

GRAB DATA	Location ID: EW	-RM- 4		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1333	19.0	10	N	Insufficient penetration
1338	18.9		Y	
			,	
SAMPLE DATA	Sample ID: EW-	RM06-4		
Sediment type (%) cobble	Sediment color: 17:50 n finals brown surface	Sediment odor:	H₂S	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	Organic matter, worms
sand (FMC) 90%	brown	moderate	other:	
silt - 10 ⁰]0	gray	strong		
clay	black			

Wing	Ward environmental LLC

rojectivane.	-vv i (Coortical fill lador	PI	ujectrio.: 00-00-0	J3-23
Date:	1/24/06		Weather: Sunv	14, cool, light wind
Sampling Method: _0).1 m² van Veen grat			Pierce, A Rodriquez, E-Duffield, K-Hurley
			-	
GRAB DATA	Location ID: EW	-RM- 5		
Latitude:		Longitude:	-	
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1351	19.0	15	Y	
				<u>-</u>
				-
SAMPLE DATA	Sample ID: EW-I	RM06- 5		:
Sediment type (%)	Sediment color	Sediment odor		Comments: (i.e. organic matter, wood
cobble	Discontinues brown surface	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel 5,10%	drab olive	slight	petroleum	Wood debris, worms, bubble snail
sand (F)(S) (5)—800	brown	moderate	other:	0-1cm Fine sandisilt
silt 520	gray	strong		1-3 cm Med sand 3 cm - 15 cm Course sand (cap)
clay	black			3 cm - 15 cm Course sand (cap)

GRAB DATA	Location ID: EW	-RM- 6		
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1404	19.0	@17 15	Y	
SAMPLE DATA	Sample ID: EW-	RM06-6		
Sediment type (%) cobble gravel sand (FMO 40%) silt Tyace 45%o clay	Sediment color:	Sediment odor: none slight moderate strong	H ₂ S petroleum other:	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.) Woody debris, leaf (iffer, worms Slight Sheen 0-3 cm Med Sand & Silt 3-15cm Coarse Sand

11.1			
124/06		Weather: Sun	ny cool, light wind
0.1 m² van Veen grat			Pierce, A Rodriquez, E Duffield, K Hurley
		-	
Location ID: EW	-RM-7		
	Longitude:	· · · · · · · · · · · · · · · · · · ·	
Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
18.6	18.6 13 Y		
	23.604		
	<u> </u>		
(brown surface)	Sediment odor	H₂S	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
drab olive	slight	petroleum	Slight pocket sheen
brown	moderate	other:	Organic matter, wood debris, leaf litter, worms 11-13cm (Cap layer) loarse sand
black	strong		11-13 cm (Cap layer) boarse sand
	Docation ID: EW Bottom depth (m) 18.6 Sample ID: EW-I Sediment color brown surface drab olive brown gray	Location ID: EW-RM-7 Longitude: Bottom depth (m) 18.6 Sample ID: EW-RM06-7 Sediment color brown surface drab olive brown moderate gray Location ID: EW-RM-7 Longitude: Penetration depth (cm) Sediment odor Foreign surface strong	O.1 m² van Veen grab Location ID: EW-RM-7 Longitude: Bottom depth (m) 18.6 Sample ID: EW-RM06- 7 Sediment color brown surface drab olive brown gray Crew: T Do, S Acceptable grab (Y/N) For in the strong in

Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1426	18.4	13	Y	
		<u> </u>		
SAMPLE DATA	Sample ID: EW-	L RM06- 8	<u> </u>	
Sediment type (%) cobble gravel	Sediment color: Discontinus prown surface	Sediment odor:	H₂S	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel (75%) sand (FMC)		slight moderate	petroleum other:	Wood debris, worms
silt	gray	strong		Wood debris, worms 0-13 cm (Cap layer) Garse Sand
	1	1		

W	ing	Ward environmental	

clay

black

Project Name: Date: Sampling Method:	EW Recontamination 1/24/06 0.1 m² van Veen grab)	Weather: Sunni	19-29 y , cool, light wind Pierce, A Rodriquez, E Duffield, K Hurley
Latitude:	Location ID: EW	Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1437	18.3	16	Υ	
				:
SAMPLE DATA	Sample ID: EW-I	RM06- 10		
Sediment type (% cobble	Sediment color Discontinus brown surface	Sediment odor	H₂S	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel 100% sand (F) (F) silt Trace 45%	drab olive	slight moderate	petroleum other:	organic matter, worms, wood dibris, leat litter 0-5cm Fine-med sand 100% 5-16cm Coarse sand cop) 100%
silt Trace 45%	gray	strong		5-16cm Coarse sand cop) 1002

GRAB DATA	Location ID: EW	-RM- 19		1.
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1448	16.8	NA	N	Wash out large subangular gravel
1453	16.0	NA	N	Wash out large subangular gravel Chain lock, empty grab
1456	16.0	NA	N	Wash out
SAMPLE DATA	Sample ID: EW-l	RM06- 19		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble	brown surface	none	H₂S	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel	drab olive	slight	petroleum	
sand (F M C)	brown	moderate	other:	
silt	gray	strong		
clay	black			

W	ing	Ward	*

Project Name:	EW Recontamination Mo	nitoring 2006 Pro	oject no.:	05-08-09-29
Date:	1/24/06	<u>/</u>	Weather:	Sunny, Cool
Sampling Method:	0.1 m² van Veen grab		Crew:	T Do, S Pierce, A Rodriquez, E Duffield, K Hurley

GRAB DATA	Location ID: EW	-RM-19 Conta	7	
Latitude:		Longitude:		
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1459	NA	NA	N	Grab flipped empty grab
1502	NA	NA	N	large gravel caught in jaws
1506	17.9	1200	Y	1/2 grab sample kept; 28.7 ft NW
SAMPLE DATA	Sample ID: EW-l	RM06- [9		of target location
Sediment type (%) cobble sub Amaniar gravel 2020	Sediment color D:s Continues brown surface drab olive	Sediment odor	H₂S petroleum	Comments: (i.e. organic matter, wood debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.) organic matter, pockets of sheet
sand (BM) C)	brown	moderate	other:	0-2 cm Med-fine sand & silt
silt go %	gray black	strong		2-12 cm Med-fine sand W/ subangular gravel

GRAB DATA	Location ID: EW	-RM- 21		
Latitude:		Longitude:		£7
Grab time	Bottom depth (m)	Penetration depth (cm)	Acceptable grab (Y/N)	Comments:
1518	18.0	14	Y	
SAMPLE DATA	Sample ID: EW-	RM06-21		
Sediment type (%)	Sediment color:	Sediment odor:		Comments: (i.e. organic matter, wood
cobble (brown surface	none	(H ₂ S)	debris, shell fragments, sheen, fauna, field duplicate, rinsate blank, etc.)
gravel Floring	drab olive	slight	petroleum	Worms, wood debris
sand PMO-10%	brown '	moderate	other:	0-3 cm Fine with trace medsand
silt	gray	strong		3-14cm Coarse sand (cap)
clay	black			•

2 SPrarce 1/11/05	S.Parce 3
1/11/05 EW Recontamination Monitoring	1/12/05 EW Recontamination Monitoring
Coring / Grat	coing/grab sampling
Crew: Than Po	crew: Thai Po
Emily Duffield WW	Emily Duffreld -> ww
Shannon Plarce	Shannon Purce
Jesse Bennett - Parametrio	Jesse Bennett - Parametrix
Charlie Eaton 7	Charlie Eaton 7
Charlie Eaton J Bio Marne	Charlie Eaton 7 BioMarine
	weather: cool, calm, no ppt.
0700-Meet a Harbor Island Marma	
weather - wind (15-25 knots)	0700 - Meet @ H. Island Marina;
0710-C. Faton + crew decided	mobilization of boat + equip
wind tweather conditions	Jos sampling
are unsafe for sampling	
conditions - will attempt	0738 - Head to EW for sampling
sampling tomorrow (1/2)	Beginning in Zone 3 (15,19,22)
0715- Leave H. Island Manna.	0755-Go over Health + Sajety Plan
	+ equipment procedure
	* Nav. Sygrould b/c of current in EW
	0823 EW-RM-15 - core sampling (took core)
11110Sperce	water depth = 1750 56 ft
δ'	location-(recorded on C. Eaton's
	nav. equipment)

1/12/05					S. Plerce	1/12/05				S-P	lerie 5
	EM-R	m-15 (core-a	Hempt			We wil	1 samp	le motes	Plon d	emisky
n. osaca .	1 - 1		14: n/a;	t .	_				e have	_	_
					emptagain		V		ume z		
	added n	nore we	ight (otal = 6	weights)						
				-	,0 lpg.	0909	EW-RI	M-1 (9	rab-att	mpt 1)	
0834	EW-RM	-15 (00	rc-attem	p+ 2)			water	depth =	974msp 1	9.5m	
	water d	<u>epth</u> = 5	2 {}				Cha	e = 2.6	m)		
	sed.rec	overy d	epth = 60	cm*			grat d	d not 1	m) ire		
•	* will allo	w sed.	to settl	e b/f 1	recording						
	depth				J _i	09 1/3	EW-RN	1-1 (gra	unly av -atten	p+2)	<i>'</i>
									19.6m		
	EW Rn	1 <i>19 (</i> =	<u> </u>	201 t)	<u>\$ρ</u>		pener	ation=	15 cm		reault
0840-	Core Ca	tches +	collar	jell go	core	0930	- EW-RY			: .	
	t Intow		_			2729	-EW-RY	n-2/gr	ab-atter	np+ 1)	Would
	Sample	unhl	we get i	nother	ratcher	8	water	depth.	= 19 3cn	,	3 3
									15cm		500
0845-	- Called	Floyd	McCart	hy + l	4 t		1		1	i	- 2-
	Called a msg.	to get	anothe	catche	n	0920 -	* Desis	veation	w/ Pro	uct Mn	gr
						0936			for Are		
0850 -	Talked	to Ang	e Rudri	ouez:	<i>t</i> o	u	T-25-6	kid.			
	Coordina	te w/	Toyol +	ouck up	new			_			cussed
	cutcher.						the recou	_		1.3	3
							2-2.50	-		1.	1
0900 -	Will Sa	mple s	tations.	in Zone	· <i>)</i> ,						
	where an	ly a gr	ab iš n	ccisar	Y	to	meet m	sie agre un. pen	ed no hi etration	eed to redepth (8	etake cone Ocm)

6 1/12/05 SPerce	1/12/05 Cere Description S. Purie 7
0947-EW-RM-16 (gral only-attempt)	1050 - EW-RM-15 (jm. 0834 collection time)
water depth = 12.2 m + replicate	water depth = 52ff
penetration = 14cm EW-RM-101	Sed recovery = 60cm
	time sampled = 0834
1000 - EW-RM - 24 (grav only-attempt 1)	depth of coarse sand (cap layer) = 23 cm
water depth = 19.0m = replaced est	
penetration = 15.5 cm samples collected	cap material = 2.5 cm
1018 -EW-RM-25 (grabonly-attempt 1)	org. material = none visible
water depth = 19.1cm	Will take chemistry grav based on
penetration: 14cm	evidence of fine sand layer (2.5cm)
	abare cap
1025 - Communication w/ Angle - Will	photos= 1963, 1964
retreive qua core catcher jm. her.	
	1052 - picked up core material (catcher)
1040 -Will plan to collect a grav for	sm. Angie @ T-25.
Chemishy @ EW-RM-15 Based on	
conversation for S. Me Groddy, the	1100 - FW-RM-15 (grab -attempt 1)
core taken 0 0834 is acceptable	nater depth= 16.8 m
in magering chemistry grav blc	penetration= n/a-rocks caught
there was clearly a 2-2.5 cm layer	
gine sand above cap material	
oven though there was only 60 cm	1104 - EW-RM-15 (grab-attempt 2)
penetration.	water depth = 16.3 m
	penetration = n/a rocks caught in
	jaws-wash ont

8/12/0	•		S. Purce	1/12/05		SPurce 9
1108	EW-RM-15	(grab-attemp	† 3)	1122	BW-RM-15/grab-	attempt ()
		th = 16.6 m			water depth= 17.	\$ * T
		lepth = rocks 11	njaws-Hast	7.	pere hat andepth = 1	
		•	U			
1112	EW-RM-15(grab-attempt	+4)		blc grab slippe attempt again sl	ightly of statemen
	water depth		-		location	0 . 00
	penetration	depth= rocks 11	njaws-wa	<u> </u>		
	o o	ut	U .	1128	5W-RM-15/grab-a	Hempt 7)
					water depth = 18m	
1115	- Communitat	non w/ S.MeE	Groddy tha	<u> </u>	penebration depth=	n/a-washed
	ej ajter ser	renal gnath at Dly B BJ and	timpts,		aut w/ rocks in	jan
	its ok to app	oly B BJ and	marc			<u> </u>
	several meta	ns aut pm s	tation	_ 1133		
	but the note	i whether y	there		water depth= 18.5	M (VI OR
		ice of fine			penetration depth = 1	7 cm (1/20k to take)
,	avorse cap		what		9.7 It go target	to NW of station
	triggered s	ampling).				
				1145	- lunch break befor	
	· · · · · · · · · · · · · · · · · · ·	t + took sar	1		equipment back or	rea to corer.
1117	• I =	(grav-atten	nprs)			
•		p+h= 17m			thange over to c	
		ion depth = n/a	_		will return to Z	
	- L	im. target t				coring added weight
	my 79 San	nple ~10ff f	ow a samp	<u> </u>	Weights on onen =	4801bs
•						

10/12/05	S. Preni	1/12/05				S.Pa	nci 11
1240 EW-RM-19 (core-	atempt 1)		Will m	ove to	EW-RN	N-22: 6	and
water depth = 18.			attemp		* 1/-		
penetration depth =					i		
insufficient pere	Iration - vill	1316 -	Comm	unveat	on w/	S.MºGI	oddy.
sample again					to me		
					ecause i		
124 EW-RM-19 (core-a	· · · · · · · · · · · · · · · · · · ·		4 parl	ed atter	npts to	Servet	ate
water depth = 184	m ·		throng	n grave	1 layer	. We w	<u>íti</u>
pen.depth = 14cm	a-insuspecial				how E		
petietration			goes				
1254 EW-RM-19 (core-at	lempt 3)	1322	BW-RA	N-22 (ore-att	empt 1	}
water depth = 18.	•			depth =			
pen depth= 2-3,	em insufficient		pen.	depth=	4cm -in	sugges	t pen.
penetration-will	target		retai	red son	ne grav	el~will slightly o	move to to ract
1300 Navigation problems	w/ compater -	1327			core-a	1	
reboot computer					= 17.31		
1313					n/a-wa	la	ho
131288 EW-RM-19 (core -at	cmp+4)		9.3	AOF	target	ક્લ્યું	Trocks
water depth = 19 m)		_		0		
pen.depth = n/a-		1329	EW-R	M-22 (one-att	mp+ 3))
+mared ~10 A jm.	target @ attempt			rdepth			
4 (n.54)°	,		peno	lepth =	n/a-wa	ten only	y, no
				target	.	لي ولي	brocks

12 /12/0 Ce	SiPierri	1/12/06	-			S.Pur	i e	13
1333 - Communication	v/ Susie on results		The WALL	mart o) (m) <i>E</i> 3	v-RM-17	<u>.</u>	••
	mpls@ew-RM-22.							
Given direction	-		made	onto	Eu - Dn	attempt:	- ,	
	npts @ BW-RM-22	-	(D.V F	\		
	vill move unto zone	1404	FW-RI	M-12/	$(c) e - a^{\dagger}$	tempt	7	
2. Area.				or dept			· · · · · · · · · · · · · · · · · · ·	
		VALVANIE			1	coarse s	- A	-
1338 EW-RM-17 (CO	re-attempt 1)					460. pere		
water depth =			(, - , -		1 2 2 2 10	00.4	,, CD	<u> </u>
	1 cm; coarse sand	1409	EW-R	M-12 (4	m-04-0	mpt 2	\	
fill captured.						20.5m		
				, , , , , , , , , , , , , , , , , , ,		en only	1	
1345 - EW-RM-17 (con	e-attempt 2)		2013		ed on re		,	
water depth =	•							
	4 cm, coarse sand	-						
~7.7 st-jm tar		1406	fact m	CG 1-0	Susia	alocate o		
	0	1.00	Lincha	2 %	Jha oa	about s soluth	Sourchil	6"
1350 EW-RM-17 (core-	attempt 3)	-	M SAC	tchus.	th 4	abyacu	0	
water depth=						acore (1		
Den. death = <1	cm - gravel / coarse							
tspeed up RPMs or	boat in attempt		13 400	01.	Cica Pri	. Param	40111X	
to get man jorce		1412-	Decide-	1 da	<i>10</i> + 5	141 - P 41 -	70	
into sed - could be	falling area					and ar		
G.6 14 fm. 7	avsit		LIMPIU	-1 200.	Diri in	,,,, (d. m.)	<u>-~</u>	
D. D	0	-						
			Vinites					

1418 - EW-RM-28 (core-attempt 1) water depth = 21.6m pen. depth = < 1 cm - coarse sand pen. depth = < 1 cm - coarse sand pen. depth = m/a; chain (augnt - mistire 1422 EW-RM-28 (core-attempt 2) Water depth = 21.2 m pen. depth = 21.2 m pen. depth = 21.2 m pen. depth = 20.3 m pen. depth = 12 cm 1428 - Communication / S. McGroddy to finish core sampling - is not yielding successive result. We will go to the locations in Bone 2 whose bother a chemishy grav + are lore required. 1430 - switch sampling equip. 1442 water depth = 19.5 m * shotos pen. depth = 19.5 m * shotos 1540 Finished Sampling of day Pen. depth = 12 cm 1942 water depth = 12 cm 1944 Finished Sampling of day Pen. depth = 12 cm 1944 Finished Sampling of day	veri 15
water depth = 21.6 m pen. depth = <1 cm - coarse sand pen. depth = ~1/a; chain (augnt - mistire 1422 EW-RM-28 (core-attempt 2) Water depth = 21.2 m pen. depth = 21.2 m pen. depth = <1 cm coarse sond 1428 - Communication of S. McGroddic to finish core sampling - is not yielding successful results. We will go to the locations in Zone 2 whose bother a chemishy 1533 EW-RM-18 (grab attempt 1) grab + are are required. 1430 - switch sampling equip. 1442 Water depth = 19.5 m * shotos Den. depth = 20.3 m Den. depth = 19.5 m * shotos Den. depth = 19.5 m * shotos Den. depth = 21.8 m Den. depth = 20.3 m Den. depth = 19.5 m Den. depth = 20.3 m Den. depth = 19.5 m Den. depth = 19.5 m Den. depth = 20.3 m Den. depth = 21.8	
1422 EW-RM-28 (cone-attempt 2) Water dipth = 21.2 m pen. depth = 21.2 m pen. depth = 21.2 m pen. depth = 12 cm 1524 EW-RM-20 (grav attempt to finish core sampling - is not yielding successful result. We will go to the locations in 200 EW-RM-18 (grav attempt 1) There is not yielding successful result. We will go to the locations in 200 EW-RM-18 (grav attempt 1) There is not yielding successful result. Water depth = 19.8 mm m pen. depth = 19.8 mm m pen. depth = 19.8 mm m pen. depth = 13 cm 1430 - Shitch sampling equip. Water depth = 19.8 m * shotos Den. depth = 19.5 m * shotos	
1422 EW-RM-28 (core-attempt 2) Water depth = 21.2 m pen.depth = <1 cm coars sond 1428 - Communication of S. McGroddy to finish core sampling - is not yielding successful result. We will go to the locations in Zone 2 whose bother a chemishy part + are one required. 1430 - Switch sampling equip. 1442 Water depth = 19.5 m * potos Pen.depth = 19.5 m * potos 1540 Finished Sampling of aday Den.depth = 19.5 m * potos 1540 Finished Sampling of aday	
water depth = 21.2 m pen.depth = <1 cm coars sand 1428 - Communication of S. McGroddy to finish core sampling - is not yielding successful result. We will go to the locations in Zone 2 whose bother a chemishy grab + are are required. 1430 - Switch sampling equip. 1430 - Switch sampling equip. 1442 water depth = 19.5 m * shotos Pen.depth = 19.5 m * shotos 1540 Finished Sampling of ay Pen.depth = 19.5 m * shotos	
water depth = 21.2 m pen.depth = <1 cm coars sand 1428 - Communication of S. McGroddy to finish core sampling - is not Yielding successful result. We will go to the locations in Zone 2 whose bother a rhemishy qual + are are required. 1524 EW-RM-20 (grab attempt) pen.depth = 12.8 m pen.depth = 14.8 m pen.depth = 19.8 mm pen.depth = 19.8 mm pen.depth = 19.8 mm pen.depth = 19.8 mm pen.depth = 13 cm 1430 - shitch sampling equip. 1430 - shitch sampling equip. 1442 Water depth = 19.5 m * shotos pen.depth = 13 cm	-
pen.depth = <1 cm coars sound pen.depth = 12 cm 1428 - Communication of S. McGroddy to finish core sampling - is not yielding successful result. We will go to the locations in Zone 2 whose bother a chemistry grav + are are required. 1430 - Shiteh sampling equip. 1430 - Shiteh sampling equip. 1430 - Water depth = 19.5 m * shotos 1540 Finished Sampling of all your day Pen.depth = 12 cm	
to finish core sampling - is not Yielding successful result. We will go to the locations in Bone 2 whose bother a chemistry The are are required. 1533 EW-RM-18 (grab attempt 1) 1430 - switch sampling equip. 1430 - switch sampling equip. 1430 - water depth = 19.5 m * photos 1540 Finished Sampling or day 1540 Finished Sampling or day 1540 Finished Sampling or day	
to finish core sampling - is not Yielding successful result. We will go to the locations in Bone 2 whose bother a chemistry The are are required. 1533 EW-RM-18 (grab attempt 1) 1430 - switch sampling equip. 1430 - switch sampling equip. 1430 - water depth = 19.5 m * photos 1540 Finished Sampling or day 1540 Finished Sampling or day 1540 Finished Sampling or day	1)
yielding successful neaults. We will go to the locations in Bone 2 whose bother a chemistry pair + are one required. 1430 - switch sampling equip. 1430 - switch sampling equip. 1430 - switch sampling equip. 1430 - water depth = 19.5 m * shotos 1442 water depth = 19.5 m * shotos 1540 Finished Sampling on day Den depth = 12.5 m	
Have 2 whole bother a chemistry 1533 EW-RM-18 (grab attempt) grab + are one required. 1430 -switch sampling equip. Finished Sampling in day Den danth = 19.5 m * shotos 1942 Water dapth = 19.5 m * shotos 1945	
1430 - Stritch sampling equip. 1430 - Stritch sampling equip. 1430 - Stritch sampling equip. 1442 pen - 28 (grab - attempt 1) 1442 water depth = 19.5 m * shotos 1540 Finished Sampling on day 1942 Pen depth = 12 cm	
1442 water depth=19.5 m * hotos 1540 Finished Sampling on day	
1442 water depth=19.5 m * shotos 1540 Finished Sampling on day	
Den de 12 cm 1965,	
1966	
Note-EPA oversight - J. Ben	rett
1456 EW-RM-26 (grab-attempt 1) cut thumb on barrel of	
water depth = 19.6m conen washed + covered u	/
pendepth = 15 cm band-aid; minon cut	

16 1/2/06 Sherce	1/23/06 A Podriquez
1550 - Head back to Harbon Island	D730 Arrive at Haybor Island Marina
manna	Weather: Overcast, mist, fog
	Grew: A. Podriguez (WiNDWARD)
1552 call Susie to let her know	T. Do C Windward)
we are done sampling to	S. Pierce (Windward)
the day. We will likely gry	Jesse Bennett (Pavametrix, oversight)
to use parametrix's vibraco	
for coing next week. Wo	Tom Petnam (Biomarine)
sampling will ocare	
tomorrow (1/13 - Friday)	0745 The minimum acceptable penetration
	for core samples is 80cm 31.5 in.
	This is the initial day of sampling
	with Vibracore equipment. Field
Dark	crew is setting up. Photostaken.
Int in	0805 Motor to EW-RM-5,
12 Came	Core sampling location
	Gore attempt 1 C FW-RM-5
	* Penetration states depth (initial) = 54 ft
	* Penetration Whater depth (final)=59 ft
	Sed recovery=39;n
	Time Sampled: 0847
	Depth of coarse Sand (cap layer) = 10 in.
	Surface schiment fine above cap layer = 2 in
	No visible organic material

1/23/06	EW-	PM-5		A. Podri	quez	1/23/06	,		A.P.	driquez	
	Water	Depth = 1				0945	EW-R	m-11			
				t observ	ed ovarlying		_	tempt	Photos.	taken 70-	71
	the san	d layer	is > 20	m, a cl	emistry			tion de			1
	sample	(grob)	needs to	be colle	cted.			tim depo			
f NOTE	Pente	tration d	lepths a	t EW-F	2m-5		1 .	depth =	_		
	10CAT	m were	estima	ted value	nes		- 4	covery:			
	ble t	he vibra	Lore w	is setti	ng at			sampled	ــــــــــــــــــــــــــــــــــــــ		
	angle							f coarse			7 in
	Photos	taken	2-67					ger prese	i		
0920	EW-RI	n-9,0	ore Sam	pling ha	tion			sediment	ĺ	layer 41.	sem
	Core a	Hempt	/ Photos	taken 68	- 69		1	rganic m	. •	,	
	Penetr	ation de	sth, in the	1 = 54ft				the de			e sene
	Penetro	ition dep	th, final	=60ft			1 -	yer) =>10		_	
	Water	depta = 19	.7 m			***************************************		- ; : < 2			į.
	Sed Re	covery = t	Zin.				1	s NOT m	_		-
	Time.	ampled	= 0924								
•	Depth of	coarse :	and (cap	layer)=	12 12	1035	EW-RM	1-19, Core	· location	on man	1
	DEF Somal	layer pres	ent				Gore att	ا ما			
	surface s	ediment	ibove cap l	ayer = 1 c	<u> </u>		اها ما	in Depth	initial:	: 49 ft	-
	Visible or	game ma	erial con	sisting o	if leat			in Depth			
):Her	in top ice	n layer			,,,,		18 = Heq			···
			sediment	overlying	, the		1 .	every = N		was lost	
					y (GRAB)	******		mpled=10			
		_ ;	to be col					t coarse		lever) =	(AL)
	•	,					[1			- /	

20 1/23/06	A. Rodricuse	1/23/06	A. Rodriguez
	EW-RM-19 contid	1136	EW-RM-22, core location on moun
1048	Vibracore core i core tube were lo.	r <i>+</i>	Penetration depth, initial= 44.5ft
	upon retrieval		Penetration depth, final = 50ft
			Water depth = 16.1 m
1 00	Core attempt 2, Photos taken 72-74		Sed Recovery = 52 in.
VIII	Penetration Lepth, initial = 48ff		Time sampled = 1138
	Penetration depth, final = 53 ft		Depth of coarse sand layer (cop layer) = 17.
	Nater depth = 17.8m Sed Recovery = 57 in 53in		Sand layer present
	Sed Recovery = 5 tim 53 in		Surface sedimentalove cap layer=15cm
	Time Sumpled=1112		Photo taken 75
	Depth of course sand layer (cap layer)=11.5in	No visible organic material
	Sand layor present		NO Chemistry Grab) sample needed for
	Justace sediment above cap layer = 2.0c	<u> </u>	collection ble depth of cap layer > 10cm
	Visible organic material = none		& surface sediment overlying the cap layer
			is 42cm.
· 	Cut open core tube to vissinally inspect		
	Composition of sand layer. Course sand	1200	LUNCH BREAK, called Susie + gave 1
	with subangular gravel dispersed		the progress of the field effort.
	-throughout. Phops taken 76-81	1236	Motor to EW-RM-12
	After A In 10 . d. C. II		Core attempt 1, Photo taken BZ
	After Communication w/ Susie McGrowdy she	<u> </u>	lenetration depth, initial=57ft
	directed us to Collect a grab chemistry		Penetration depth, final = 62.5ft
	Sample at EW-RM-19 m /24		Water depth: 19.9 m
			Sed Recovery = 48 in

1/23/06		A. Rodri	quer	1/23/06			A. R	odrigu	! 7
	EW-RM-12	Contid		1356	l	M-14		7	
	Time Sampled =	= 1305		. *	A		+ 1, photo	s taken	B4-85
	Depth of coarse :		p layer)		Pentera	Penetration	n depth,	initial=5	0.5 ft
	= 12 in. Sand la	wer present			Penetrat.	in depth	final=5	5.5ft	
	wrface sediment ab					lepth = 1		,	
	Visible organic mas				Sed Rec	overy =	72 ff in.		-
	No chemistry Cara		eded for			ampled=			
	collection b/c dep	oth of cap lay	er > locus		f	1	d layer (a	so kuer)	= 11 in.
	overlying sand	layer is 42	em.			yer is p			
					- Λ		tabove a	ap lauer	= 1.5cm
1327	EW-RM-13						naterial=		
	Core attempt 1 Pho	to taken 83	4				GRAB) Sa		reded
	Penetration depth, in						ble dep		
	enetration depth to	. .			; .		aterial	_	
	Water depth = 19.0,	4				5 4 2 6		7	7
	sed Recovery = 63 in				/				
	Time sampled= 13			1423	EW-RI	M-17	,		. 77.00
75	epth of coarse sand la	1 .	9.5 in	· · · · · · · · · · · · · · · · · · ·		آ ۔ ا	Photos +	cken 81	5-87
	and layer is presen					l i	, initial =		
	urface sediment ab		lem				h, final=		
V	isible organic mad	er:al = None				epth = 18			
	o Chemistry (Grab) 50		or collection .			covery = b			
Ь	Ic depth of cap lay	er > locm & o	verlying	i		mpled=	_		
	and layer is L 2 cm		, ,				. sand law	ser (can	layer
		Anthre An			= 8 in.		Ţ		1-,

123/06	EW-RM-17 Contid	1/23/	06	A.	Rodrig	ue2
	EW-RM-17 Contid	1524	EW-RM-27		1	_
-	Sund layer is present		Gre attempt	1 Photo +	aken 89	
****	Surface sediment above cap layer = not vi	5166 I	Penetration dep	ه ه ۱	ا مما	
	Visible organic material = none		Penetration dep	I		
· · · · · · · · · · · · · · · · · · ·	No chemistry (grab) sample need	led	Water depth=1			-
·	to be collected ble cap layer:	57/0cm	Sed Recovery =	47 in.		
	* material overlying sand layer	is Lzen	Time samples	= 1534		
			Depth of sand layer		1=45:	
1500	EW-RM-21		Sand layer pres			REH
	Core attempt 1, Photo taken 88	· r	Surface seliment	1		
	Pendration Depth, initial = 49ft				i I	
, -t	Penetration Depth, final=54ff	~ ~ ~ ·	Visible organic n	j .	l -	
	Water Depth = 18.4m	7	No chemistry (g)	1 7 i		
	Sed Recovery = 49 in.		ole depth of cap	inger !	o 10 cm s r	NA CY IN
	Time sampled=1508		overlying cap 1	yer .	~ cm	
	Depth of coarse sand layer (cop lay er)=1	14in 1550	EW-RM-26			
,	Sand layer present	, , , , , , , , , , , , , , , , , , , ,				77414
	Surface sediment above cap layer=		Core attempt 1		. H/ fl	~~/!!!
	Visible organic material = None		Penetration dept	ا م ھا		
Ae	to chemistry (grab) sample required		Penetration dept		7177	,
	ble for two is the		Water depth=	_		•••
	verlying can laury is > 2 cm		Sed Recovery=			
	overlying eap layer is > 2 cm		Time sampled:			
			Depth of sand layer loa	•	in.	
,			Jand layor present			
1			·		··	

1/23/01	5.1.8.4	4. Rodriquez	1/24/06			A. Rudrig	
	EW-RM-26		Ø730	Arrive a	et Harbor	Island Ma	arina
	Surface sediment above cap	layer = lobe		Crew: A	ngelta Ros	lriquez (w	indwar
	determined 1/24 morning	ng ble suspended		Shannon	Pierce LW	indward)	
	material needs time to		1.	Thai Do	o (Windw	ard)	
	Visible organic material	= None			Eaton (Bio)		
WF=14 11		:		Tom Pu	tham (Bio	Marine)	
612	Head back to Harbor	. Island	. '				
	Marina		•	Weather:	F0994, C00	1	
					////		
640	Arrive at Harbor Island		0744	Continue	Core descr	intim for	-
	End of field day		:	EW-R	M-26		
*****				:	sediment a	alave cen	mar
				= 4 cm		The Copy of	ayer
		,	2	1 1	un 90-91		
				1710705 144	201 -10 - 11		
			0750	Mater to	EW-RM-	3.0	
V/140	2/36		0.30				- <i>O</i> A
	100 (Vin	:			tempt 1, Pho		7-78
******					in Depth, init	ا 🚗 📗	
					m Desta, fix	141-77 77	
(15		.*		Water Dep			
					eny: 48 in.		
		- 5			mpled=0817		
					nd layer (cap lo	14er) = 9.5 in.	
				Sand lave	r present		

124/06	EW-RM-28 Cont'd	1/24/06	A. Rodriguez EW-RM-3 Contid Depth of sand layer (cap layer) = 9 in
***************************************	EW-RM-28 Contid		EW-RM-3 Contid
	Surface sediment above cap layer = 41cm		Depth of sand layer (cap layer) = 9 in
	Visible organic material not present		Sand layer is present
			Surface sediment above cap layer = 1cm
830	EW-RM-23		Visible practice material with mercent
	Core attempt 1, Motos taken 102-104		Visible organic material not present
~~~~	Penetration Depoth, initial= 54ff	0923	EW-RM-6
	Penetration Depth, final=59 ft	· ·	Core attempt 1, Photos taken 100-14
	Water Depth= 20ftm		Penetration Depth, initial=54ft
1-7570014-	Sed Recovery = 54 in		Penetration Depth, final = 59ft
	Time Sampled= 0849		Water depth= 19.6m
	Depth of Sand layer (cap layer) = 4 in	``	Sed Recovery = 60 in.
	Sand layer is present		Time sampled = 0939
	Surface sediment above cap layer & 1 cm		Depth of sand layer (cap layor) = 15.5; n
	Visible organic materials worms are present		Sand layer is present
	in cap layer		Surface Sediment above cap layer = 1 cm
		-	Visible organic material is not present
901	EW-RM-3		
	Gre attempt 1, Photo taken 99	095L	EW-RM-B
-	Penetration Depth, initial = 55 ft		Core attempt 1, Photos taken 105-106
	Penetration Depth final = 59.5 ft		Pententian Depth, initial = 54ft
	Water Pepth= 19.9m	,	Penetration Depth, final=59ft
	Sed Recovery= 62 in		Water Depth = 19.8 m
	Time Sampled = 0912		Sed Recovery = 57 in.
	7 3		Time Sampled = 1008

124/06	4, Rodriguez	1/24/06	A. Podriguez
	EW-RM-8 contid		EW- 12M-18
	Depth of the sand layer (cap layor) = 10 in	··•	Depth of the sand layer (cap layer) = 15 in
	Sand layer present		Sand layer present
	Surface sediment above cap layer & 1 cm		Surface sediment above cap layer & Icm
-	Visible organic material not present		Visible organic material not present
1035	EW-RM-10	1125	EW-2M-20
	Core attempt 1, Photos taken 107-108		Core attempt 1
	Penetration Depth, initial: 54.5 ft	·	Penetration Depth, initial = 59.5ft
	Penetration Depth, Final =59.5ft		Penetration Depth, final = 64 ft
	Water Depth: 19.5m	· · · · · · · · · · · · · · · · · · ·	Water Depth= 21.6m
	Sed Recovery = 44 in.		Sed Recovery=31.0 in
	Time Sampled=1048		Time Sampled = 1134
	Depth of the sand layer (cap layer) = 9.5 cm.		Depth of the sand layer (cap layer) = 13.5 in
	Sand layer is present		Sand layer is present
	Surface sediment above cap layer = 1cm Visible organic material not present	· · · · · · · · · · · · · · · · · · ·	Surface sediment above cap layer = not visib
			Visible organic material not present
105B	EW-RM-18		
	Core attempt 1, Photos taken 149-150	1148	Head back to Harbor Island Maring
	Penetration Depth initial = 52.5ft	<u> </u>	to pick-up grab sampling equipment
	Partiation Depth, final = 61.5ft		
	Water Depth-14.5m	. 1248	Collect rinsate RW-EW-RM-06-3
	Sed Recovery = 44 in.	1300	motor to station EW-RM-3
	Time Sampled = 1111		Weather: Sunny, cool, light wind

1/24 b	4. Radri	quez	1/24/06		A.	Podrique	2
320	EW-RM-3	·	1359	EW-RM-6			
	Grab attempt 1, Kept		70000	Grab attempt 1	, Kept		
	Time Sampled = 1321			Time sampled:			
	Penetration = 15cm			Penetration=1			
	Water Depth = 19.1m	· · · · · · · · · · · · · · · · · · ·		Water depth=19	1 ;		
1328	EW-RM-4		1412	EW-RM-7			
	Grab attempt 1			Grab attempt 1	, Kept		
	Time Sampled = 1333			Time sampled =	1415		
	Penetration= 10 cm			Penetration = 13	cas		
	Water Depth = 19.0m	<u> </u>		Water depth = 1	8.6 m		
	Insufficient penetration not kept	· · · ·			·		
		<u> </u>	1420	EW-RM-8			
	Grab attempt Z, Kept			Grab attempt 1	Kept		
	Time sampled = 1338			Time Sampled =			
	Penetration = 11 cm			Penetration = 13			
	Water Depth = 18.9m	*****************		Water depth = 16			
346	EW-RM-5		1431	EW-RM-10		19/1/201	
	Grab attempt 1, Kept	· · · · · · · · · · · · · · · · · · ·		Grab attempt 1,	Kept		
	Time Sampled = 1351			Time sampled=1			
	Penetration = 15			Penetration=160			
	Water Depth = 17.0m			Water Depth = 18.			
	Bubble small identified by Charlie Eaton			/			
		· .					

124/06 A. Rodrigue	EW-RM-599 Contid
444 EW-RM-19, Cocation on mound	EW-RM-Dig Contid
Grab attempt 1	Grab attempts
Time complete 1440	
Penetration = Washed out, subangula	r gravel . Moved 25 ft NW of target location
Water Depth=16.8m	Low sediment recovery due to
Insufficient penetration not kep	t large gravele aught in jaws
I. A.	Penetration = NA
	Water Depth=NA
Grab attempt 2	
Time Sampled=14:53	Grab attempt 6
Penetration = NA	Time sampled = 1500
Water Depth=16.0m	Penetration = 12cm
Chain lock, empty grab	Water depth = 17.9m
	Kept 1/2 of grab sample = moved 28.7 ft
Grab attempt 3	NW of target location
Time sampled = 1456	
Penetration = Washed out	Grab a Hempt (MC)
Water depth = \$6.0 m	1515 EW-RM-21
Insufficient penetration not kept	
	Time Sampled = 1518
Grap attempt 4	Penetration = 14cm
Time sampled = 1459	Water depth = 18.0m
Penetration = NA	
Water Depth=NA	1526 Head back to Harbor Island Marina
Grab flipped; empty grab	

36/24/06		A. R.	driguez					37
1529 G	ntact Susie	to inform.	that				***	
H	wever, de la	ab sampling: ed getting b Mavina bec	sack to					
H.	arbor Island introdel Bridge	e is locked	in "down"					
	sition					, ,,,,,,,,,,	,	
		or Island	naviha		3			
E	nd of field	day						****
				174MA				
							;	
		, ,					3	
	13	106						
	1 2'	920						
								.,,,,,,,
			,					

#### FORM 2: PROTOCOL MODIFICATION FORM

sand cap layer, even with additional weights. Although the only 60 cm of penetration, there was clearly a 2-2.5 cm la of material above the cap material, triggering a grab sample anyways.								
Standard Procedure for Field Collection & Laboratory Analysis (cite reference):  (Corex will be advanced into the sediment to refusal using enough to achieve the minimum target penetration depth of 80 cm (Windward, Oct 4, 2005)  Reason for Change in Field Procedure or Analysis Variation: Gravity corex could not sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-25 cm 12 of material above the cap material, higgering a grab sample anyways.								
Corex will be advanced into the sediment to refusal using enough to achieve the minimum target penetration depth of 80 cm (Windward, Oct 4, 2005)  Reason for Change in Field Procedure or Analysis Variation: Gravity corex could not sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, higgering a grab sample anyways.	Penetration depty							
Corex will be advanced into the sediment to refusal using enough to achieve the minimum target penetration depth of 80 cm (Windward, Oct 4, 2005)  Reason for Change in Field Procedure or Analysis Variation: Gravity corex could not sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, higgering a grab sample anyways.								
Corex will be advanced into the sediment to refusal using enough to achieve the minimum target penetration depth of 80 cm (Windward, Oct 4, 2005)  Reason for Change in Field Procedure or Analysis Variation: Gravity corex could not sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, triggering a grab sample anyways.								
Corex will be advanced into the sediment to refusal using enough to achieve the minimum target penetration depth of 80 cm (Windward, Oct 4, 2005)  Reason for Change in Field Procedure or Analysis Variation: Gravity corex could not sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, triggering a grab sample anyways.	-							
Reason for Change in Field Procedure or Analysis Variation: Gravity cover could not - Sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, triggering a grab sample anyways.	- a \ +							
Reason for Change in Field Procedure or Analysis Variation: Gravity cover could not - Sand cap layer, even with additional weights, Although they only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, triggering a grab sample anyways.	wergu							
Reason for Change in Field Procedure or Analysis Variation: Gravity cover could not - sand cap layer, even with additional weights, Although the only 60 cm of penetration, there was clearly a 2-2.5 cm 12 of material above the cap material, triggering a grab sample anyways.								
sand cap layer, even with additional weights. Although the only 60 cm of penetration, there was clearly a 2-2.5 cm la of material above the cap material, triggering a grab sample anyways.								
sand cap layer, even with additional weights. Although the only 60 cm of penetration, there was clearly a 2-2.5 cm la of material above the cap material, triggering a grab sample anyways.								
of material above the cap material, triggering a grab sample anyways.	penetrate							
anyways.	2 Was							
anyways.	ryer							
	<u>e</u>							
Variation from Field as A - Life of Florida								
Variation from Field or Analytical Procedure: Accept core from EW-RM-15 21H	rough							
pevetration depth was only 60 cin.								
Special Equipment, Materials or Personnel Required:								
nitiator's Name: Date: 17 7240	0/2							
Project Officer: Date: 3, 3 C	2.726							
QA Officer: Date: 3/28//	57							
Transcor 1 sure or any								

#### FORM 2: PROTOCOL MODIFICATION FORM

Project Name and Number:	EW Recontamination Monitoring 05-08-09-29
Material to be Sampled:	Sediment
Measurement Parameter:	NA
Standard Procedure for Field	Collection & Laboratory Analysis (cite reference):
i e	be collected using a 3-inch (outer diameter) gravity
cover (Windward	Dot 4 2005)
Love Contrologoro	7 (1)
	<u> </u>
Reason for Change in Field F	Procedure or Analysis Variation: <u>Gravity gres could</u> not
•	Car boo tool of 120 Coproduct
percevano (vas sperk	d cap layer to obtain enough adjunent penetration.
√ariation from Field or Analyt	Second the construction of
a 4-inch Couter	diameter) Vilovacover
Special Equipment, Materials	or Personnel Required: 4-inch lower diameter) Viloracover
with steel core.	tube and butyl accetate core-tube liners.
Hamilton P3 vibi	vacarer, fillette GEV-PRO generator, coving
	of unit, earlies, covertibes, core noses, weight
Parkage, 40015)	
	Mil
- A	
nitiator's Name:	Date: 18 Jan 06
Project Officer:	Date: Jan 18 20256
QA Officer:	on Reple Date: 1.18.06
V	2, 0, 0, 0, 0

#### APPENDIX F. CHAIN-OF-CUSTODY FORMS

# CHAIN-OF-CUSTODY/TEST REQUEST FORM

1/10 2313

Project/Client N	ame: <u>Fas</u>	<u>t Waterway K</u>	elon tumi	natun Nu	ntair	7.9	Ship	to:	AR						
Project/Client Name: <u>East Waterway Recontamination Wunitaing</u> Project Number: <u>05-08-09-29</u>								Attn: Suo Dunnihoo					Shipping Date: 01, 25, 06 Airbill Number: 14		
Sampled By: That Do Emily Duffield SPiero							Ship			1 20/1	•		Airbi	Il Number: Na	
Sample	Forn	n filled out							and requested:						
		, , , , ,	100					,				·			
								Test(s)	est(s) Requested (check test(s) required)						
							7								
Sample				Volume of			RCB4/pest/ SVdCs	Mothals/ TOC	2.3	:					
Collection Date				Sample / # of			85%	1 ta	grain					Comments / Instructions	
(m/d/y)	Time	Sample Identi	fication	Containers	Má	atrix	8 2	M	90					[Jar tag number(s)]	
Y12/06	0913	EW-RMO6-0	01	3	sedu	mont	X	X	X						
	0930	EW-RM06-1	12	3	(	1	×	X	Х.						
2 tang	0947	EW-8M06-16		3			X	×	×.						
Co suante o	0947	EW-RM06-101		3			X	Х	×						
Phys., 144	1000	EW-RM06-24		Ť			X	×	×					includes lab rep. porgnamsi	
- Service Constitution of the Constitution of	1000	EW-RMOW-21-MS/MSD		-			×	· · · · · · · · · · · · · · · · · · ·						mate dead	
	1018	EW-RM06-25		3			X	*	×						
	433	EN-RMO6-15		3			X	×	<i>×</i>						
	1442	EW-RM06-28		3			×	<b>×</b> .	×			_			
	1456	EN RM06-26		3			X	* ×	×						
	1571	EW-RMOG-	- 23	3			<b>*</b> *	*	×						
V	1524	EW-RMO6-		3	7		>	X	X						
	Í	Total Number of C		100		e Order	/ Stateme	nt of Wo	ork#						
1) Released by: THA! DD 1) Rec'd by: 7 / 6							2) Released by:					2) Rec'd by:			
1) Released by: THAI DD  Print name: THAI DD  Signature: THAI DD  Company:							Print name:								
Company.							Signature:					Co	Company:		
Company: Windward Env. 11			10-4	·		Company	<u>.                                    </u>				<u> </u>		,		
Date/Time: Date/Time: //25/00			06 10	37		Date/Time	e:				Da	te/Time:	·		
Distribution: White o	opies accompa	ny shipment; yellow retain							~	-					
										To be	comple	ted hy	Labor	atory unon sample receipts	

Win	Ward environmental LLC

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

TO DE COM	pieted by Laboratory upon sample receipt:
Date of receipt:	Laboratory W.O. #:
Condition upon receipt;	Time of receipt:
Cooler temperature:	Received by:

#### -(2, -2 CHAIN-OF-CUSTODY/TEST REQUEST FORM

Nº 2314

Project/Client Na	ame: Eus	1 Waterway 5-08-09-2	Recenta	minahin l	Marton	Š Shij	o to:	ARI					
Project Num	nber:	5-08-09-2	7								Shipping Date: 01. 25. 06		
Contact Na		Ship	per: <u>ha</u>	nd o	le liver	vd	Airbill Number:						
Contact Na Sampleo	. Fo	orm filled out by: S. Pierce					Turnaround requested:						
		•					Test(s)	Requeste	ed (check test	t(s) require	ed)		
Sample Collection Date (m/d/y)	Time	Sample Iden	tification	Volume of Sample / # of Containers	Matrix	Pce/pest/ Sroc	Matalo/ ToC	grain.				Comments / Instructions [Jar tag number(s)]	
1/12/06		EW-RM06-1		3	sedimen	t X	*	X					
1/24/06	1248	EW-RHOG-	3-RB	5	WATER	×	X						
1/24/06	1321	EW-RM06-3		3	SEIDHEUT	- ×	×	×					
***	1339	EW-2M06-4		3	SEDIMENT	- ×	χ.	×					
	1351	EW-RM06-5		3	SEDIMENT	r x	×	X					
	1404	EW-RM06-6		3	SEDIMENT		X	X					
	1415	EW-RM06-7		3	SEDIMEN		×÷	×				Į.	
	1426	EW-RM06-B		3	SEDIMENT		$\times$	<b>×</b> .					
	1437	EW-RM06-10		3	SEDIMENT		×	×					
The state of the s	1506	EW-RM06-19		3	SEDIM ENT		* X	X					
1	1518	EW-RM06-21		3	SEDIMENT		×	*					
			<u> </u>		22:3104.624	1							
		Total Number of	Containers		Purchase Orde	r / Stateme	nt of Wo	ork #	<u> </u>				
1) Released by: 7	HAI D	0	1) Rec'd by:	7 / /		2) Released by:					2) Rec'd by:		
Print name: THA! 30 Be (smg)						Print name:					e, need by	•	
Signature Company:						Signature:					Company:		
Company: Windward Env. 11R-1				NRI	Company:								
Date/Time: Date/Time:					337	Date/Time:					Date/Time:		
Distribution: White co	ópies accompai	ny shipment; yellow reta	ined by consignor.					Unq	To be co	mplete	d by Lah	boratory upon sample receipt:	

Wind Ward Environmental LLC

200 West Mercer Street Suite 401 Seattle, WA 98119 Tel: (206) 378-1364 Fax: (206) 217-9343

10 80 0011	pieced by Euboratory upon sample receipt.
Date of receipt::	Laboratory W.O. #:
Condition upon receipt:	Time of receipt:
Cooler temperature:	Received by: